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Abstract 

The integration of communications with specific scales, various radio get right of entry to 

technologies, and diverse network assets renders next-era wireless networks (NGWNs) tremendously 

heterogeneous and dynamic. Emerging use instances and applications, together with system to 

machine communications, self sufficient driving, and factory automation, have stringent necessities in 

terms of reliability, latency, throughput, and so on. Such necessities pose new demanding situations to 

structure design, community control, and useful resource orchestration in NGWNs. Starting from 

illustrating these challenges, this paper presents at imparting an excellent know-how of the overall 

structure of NGWNs and 3 particular research problems under this structure. 

First, we introduce a network-slicing based totally architecture and give an explanation for why and in 

which artificial intelligence (AI) need to be integrated into this structure. Second, the motivation, 

studies challenges, present works, and potential future instructions related to applying AI-based 

totally processes in three studies troubles are defined in detail, i.e., bendy radio access community 

slicing, computerized radio access generation selection, and cell facet caching and content shipping. 

In summary, this paper highlights the benefits and potentials of AI-primarily based tactics in the 

research of NGWNs. 

Keywords :Next-generation wireless networks, heterogeneous networks, network slicing, machine 

learning, radio network slicing, radio access technology selection. 

 

1.INTRODUCTION 

A. Next-Generation Wireless Networks: Visions & Challenges 

The evolution of mobile communications from the first to the fifth generation (5G) has revolutionized 

many aspects of human society in the past four decades. Expediting this evolution, the next-

generation wireless networks (NGWNs) are envisioned to be the cornerstone for a vast number of 

novel applications, ranging from remote surgery to smart cities. Following the classification of 

services into enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), 

and ultra-reliable and low-latency communications (URLLC) [1], the NGWNs will support even more 

diversified services with various throughput, latency, and reliability requirements [2]. Meanwhile, 

thanks to improved reliability and connection density, the NGWNs are expected to attract enterprise 

users, in addition to conventional mobile communication users, by supporting use cases such as 

autonomous driving and factory automation [3], [4]. 

The above evolution has been shaping wireless networks towards becoming increasingly 

heterogeneous and dynamic [5]. For instance, NGWNs will incorporate various components such as 

device-to-device (D2D), vehicle-to-everything (V2X), and mobile edge computing (MEC), with 

different radio access technologies including cellular, Wi-Fi, and dedicated short-range 

communications (DSRC), as well as different access points such as cellular base stations (BSs), road-

side units (RSUs), and unmanned aerial vehicles (UAVs). Each component in the integrated 

heterogeneous communication networks can have a unique focus and a corresponding set of 

performance metrics. For example, V2X communications must handle highly dynamic 
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communication channels and rapidly changing network topology, while D2D communications require 

decentralized channel access control and communication resource allocation with high energy 

efficiency. As the heterogeneous and dynamic characteristics are inevitable results of supporting ever-

growing demands for increasingly-diverse communication services, they impose significant 

challenges in the architecture design, network deployment, and network management in NGWNs. 

Designing the architecture for NGWNs that can handle diversified services and maximize 

infrastructure and resource utilization efficiency is the first major challenge. Achieving the goals of 

increasing network capacity and accommodating highly diverse services with stringent quality of 

service (QoS) requirements necessitates innovations in network architecture. Network densification 

via deploying ultra-dense small cells can improve network capacity [6]. However, it does not provide 

a solution to scalable management of heterogeneous networks, but creates additional challenges such 

as extra infrastructure deployment cost, low cell utilization efficiency, and inter-cell interference. The 

integration of terrestrial and space networks has been proposed for providing seamless 

communication coverage [7]. Such integration, however, poses a further challenge in network 

management considering the dynamic trajectory of UAVs, the orbits of satellites, and the resulting 

impact on the service range and communication channels. A cloud/Fog-radio access network (RAN) 

based architecture, which incorporates the paradigm of cloud and fog computing into wireless 

networks, has also been proposed [8]. However, such an architecture focuses on improving energy 

efficiency, reducing cost, and alleviating data traffic on the fronthaul rather than satisfying diversified 

service requirements in complex heterogeneous networks. 

The second challenge is how to achieve scalable and intelligent network management that can adapt 

to dynamic network environments. Network environments can change rapidly due to user mobility, 

time-varying channel conditions, dynamically changing traffic load distribution, and temporal 

variations of content popularity. Up to the current generation of wireless communication services, the 

problem of handling a dynamic environment has been studied mostly on a small scale, i.e., from the 

perspective of individual or several mobile users or base stations. One example is opportunistic 

spectrum access that targets individual secondary mobile users for them to access channels in a 

dynamic network environment, [1]. Another example is the dynamic deployment of virtual machines 

in cloud-fog computing systems based on computing task arrival patterns [1]. Nevertheless, managing 

NGWNs requires the development of scalable and adaptive models and approaches that suit large-

scale problems and heterogeneous network architectures, which should include both centralized and 

decentralized network control components. 

Last but not least, effective real-time network resource orchestration in the presence of multi-

dimensional resources, many service types, and unknown traffic models is another challenge. The 

NGWNs will integrate functionalities of networking, caching, computing, sensing, and control [2]. 

Correspondingly, the resources in NGWNs will extend beyond the conventional communication 

resources (i.e., bandwidth, time, and/or transmit power), and include computing and caching 

resources. As a result, adaptive and flexible network resource orchestration becomes crucial, 

considering the surging growth in data traffic and increasingly diversified and stringent QoS 

requirements. Conventional centralized resource allocation can become inadequate in certain parts of 

NGWNs. For example, resource allocation in microcells and D2D communications may need to be 

decided locally in order to reduce signaling overhead and response time [3]. In addition, conventional 

approaches that rely on instantaneous network information, such as channel state information, and 

focus on optimizing an instantaneous performance metric, such as instantaneous data rate, can become 

inapplicable when such information is unknown. In NGWNs, exploiting the spatial-temporal traffic 

patterns while achieving service differentiation and maintaining massive connectivity will be a major 

challenge in network resource orchestration. 
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B. Network-Slicing Based Architecture 

Network slicing is an important network architecture innovation in 5G that is also expected to be 

inherited in the next generation [4]–[5][6]. Network slicing enables the coexistence of multiple 

isolated and independent virtual (logical) networks, i.e., slices, on the same physical network 

infrastructure. The advantages of network slicing are multifold. First, through the multiplexing of the 

virtual networks, network slicing supports multi-tenancy, i.e., multiple virtual network operators 

(VNOs) sharing the same physical network infrastructure [7]. This reduces capital expense in network 

deployment and operation. Second, network slicing provides the potential to create customized slices 

for different service types with various QoS requirements, which can achieve service differentiation 

and guarantee service level agreement (SLA) for each service type. Third, as slices can be created on-

demand and modified or annulled as needed, network slicing increases the flexibility and adaptability 

in network management  [1]. 

The enabling techniques for implementing network slicing are software-defined networking (SDN) 

and network function virtualization (NFV). SDN leverages the cloud computing paradigm in network 

management, such that the network has a centralized controller to dynamically steer and manage 

traffic flow and orchestrate network resource allocation for performance optimization [1]. An SDN 

controller provides the abstract set of resources and control logic for establishing slices, and a slice 

can be viewed as an SDN client context [2]. Therefore, SDN facilitates the pre-defining of slice 

blueprints as well as the on-demand creation of slice instances based on the corresponding service 

characteristics and requirements. NFV implements network functions, e.g., firewall, load balancing, 

address translation, etc., as software instances, known as virtual network functions (VNFs), running 

on virtual machines on top of general servers (referred to as NFV nodes) without requiring specialized 

hardware [2]. Thus, a network service in NFV can be considered as a component of a network slice, 

while a network slice contains one or more VNFs [3]. NFV complements SDN in implementing 

network slicing since SDN establishes control plane functions that enable slicing while NFV 

provisions services and manages the life cycle of network slices and orchestrates slice resources 

through realizing VNFs [4]. 

Despite its popularity in both academia and industry, the slicing of RANs faces several challenges. 

For example, determining the optimal slicing granularity, i.e., whether or not there should be a slice 

for each type of service, each set of QoS requirements, each VNO, or some combination of the 

aforementioned, is an open problem [5]. In addition, effective admission control that strikes a balance 

among infrastructure utilization, service provisioning in each slice, and the revenue of network 

operator calls for further investigation [6]. Last, the monitoring of slice SLA and the slice adaption 

based on traffic dynamics can be challenging, considering that the resource allocation among slices 

aims at slice isolation. The aforementioned challenges, generally involving making optimal decisions 

in a dynamic environment with unknown information, may not be solved following conventional 

model-based methods. Therefore, although network slicing will continue to be an important part of 

the NGWNs, additional innovations in the network architecture are necessary for addressing the 

above challenges. 

C. Integrating Artificial Intelligence 

The past decade has witnessed remarkable advances in the research and applications of artificial 

intelligence (AI). Research in machine learning (ML), one of the most powerful AI tools, has been 

progressing rapidly to embrace a wide range of applications including voice recognition, image 

processing, and self-driving vehicles. The rapid advances in ML, boosted by the progress in hardware 

technology specialized to support AI, paves the path for applying AI in NGWNs [7]. A major 

advantage of ML is its ability to handle complicated problems, which renders ML a powerful tool that 

suits the dynamic, heterogeneous, and decentralized features of NGWNs. Applying ML can 

potentially yield benefits such as improved performance and faster convergence in network 

management automation and performance optimization in large-scale systems. 
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ML methods include supervised learning, unsupervised learning, and reinforcement learning (RL), 

each of which suits a different group of research problems in wireless communications. Supervised 

learning relies on labeled data to learn the mapping from the input to the output, and can be used to 

analyze network data, learn network characteristics, and estimate network parameters [2]. 

Applications of supervised learning in communications and networks include traffic classification [2], 

smart offloading [3], sub-6 GHz to millimeter wave (mmWave) frequency handover [31], and 

mmWave beam alignment [3,2]. Unsupervised learning identifies patterns and attributes hidden in 

data for inference and prediction without using labeled data. Potential applications in communication 

networks include spectrum sensing [3] and traffic volume prediction [3,4]. RL iteratively learns the 

optimal decisions, based on the feedback of network state information, to maximize a cumulative 

reward in the long term. RL methods are particularly suitable for decision making in a dynamic 

environment. The applications of RL include protocol design [3,5] and user scheduling with resource 

allocation [3,6]. 

Due to their potential applications and benefits, applying ML methods is gaining momentum in the 

research and development (R&D) of communication networks to enhance system performance, 

flexibility, and scalability. For network data analysis, ML can handle the heterogeneity and spatial-

temporal diversity in the data for network design and management [3,7]. For user mobility 

management, ML is a tool for analyzing the mobility pattern of mobile users for location-based 

services [3]. For network resource management, ML-based methods can be applied to model and 

study the joint allocation of communication, caching, and computing resources [3] or the joint 

problem of content caching and delivery [4]. 

As mentioned earlier, the heterogeneous and dynamic characteristics of NGWNs demand powerful 

tools to automate and optimize network slicing. From existing studies in literature, it can be seen that 

ML is potentially a promising tool for this purpose. Applying ML in network slicing can provide the 

innovations required to address the aforementioned challenges in the network architecture and 

resource orchestration and, thereby, help fulfill the great prospect of NGWNs. 

The rest of this paper is organized as follows. Section II provides a description of the overall 

architecture. Sections III to V discuss three research problems in a network-slicing based architecture, 

as well as related research efforts and, in particular, AI-based approaches. Section III focuses on RAN 

slicing. In Section IV, we present radio access technology (RAT) selection and user association 

automation. Section V investigates content caching and content delivery. Section VI concludes this 

study. Table 1 lists the acronyms used in this paper. 
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TABLE 1 List of Acronyms 

 
 

II. Network Architecture 

This section presents the overall network architecture based on network slicing and discusses where 

and how AI can be applied. Due to the challenges mentioned in the introduction, the NGWN 

architecture is expected to have the following properties [4]: 

• Flexible and scalable, to support a wide range of service types and QoS requirements, and to 

support scalable slice management after the deployment of slices; 

• Automated and adaptive, to support automated RAN and cloud network resource allocation 

and adaptation based on data traffic and network performance, and to support automated slice 

creation, slice performance monitoring, and slice adaption; 

• Open and modularized, to support customized slices defined or operated by VNO, and to 

open certain network management functions to third parties. 

A network-slicing based AI-assisted network architecture satisfying the above properties is illustrated 

in Fig. 1. This architecture employs two-tier controllers, with a logical centralized SDN controller 

placed at a central cloud, and local SDN controllers at individual RANs. Each local controller is 

connected to the infrastructure in its corresponding RAN and responsible for collecting the network 

information and making local decisions in network operations. VNFs are deployed at servers 

connected to radio heads, APs, storage facilities, local data servers, etc. In the context of RAN, VNFs 

consist of baseband unit (BBU) functions, e.g., compression and encryption procedures and hybrid 

automatic repeat-request (HARQ) [4,2], [3]. Accordingly, network slicing translates to the placement 

of VNFs into various slices (subject to physical infrastructure constraints and QoS requirements), the 

establishment of the logical topology of the VNFs in each slice, and the mapping from the VNFs to 

the underlying physical infrastructure. In this architecture, computing becomes especially important 

due to the virtualization of network functions since the placement of VNFs in the slices is essentially 

the allocation of required computing resources. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao.t1-2965100-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao.t1-2965100-large.gif
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Figure 1. An illustration of network-slicing based NGWN architecture,with three example network slices. 

 

The key functional components and their relations corresponding to the architecture in Fig. 1 are 

shown in Fig. 2. While end-to-end (E2E) connections span both wireless segment(s) and the core 

network, this illustration focuses on the wireless domain. The centralized SDN controller is 

responsible for slice blueprint definition and end-to-end slicing based on the information collected 

from local controllers. Local controllers are responsible for assisting the centralized controller in the 

slicing of their corresponding RANs. After a slice is deployed, the corresponding local controller is 

responsible for orchestrating slice resources among end users as well as monitoring slice status for 

resource utilization and QoS satisfaction. In addition, local controllers can be involved in slice 

adaption, while the centralized SDN controller may or may not be involved depending on the service 

type and the use case. The network status and operation data, aggregated from all slices, are collected 

by local controllers and either processed locally or forwarded to the centralized SDN controller for 

analysis. The analysis results will be used to update slice deployment and slice adaption. The relation 

between centralized and local controllers introduces an important question: whether and when should 

the centralized controller be involved in specific network management and resource allocation tasks 

under this network architecture? Evidently, involving the centralized SDN controller in such tasks can 

take advantage of the global network information for making optimal network management and 

resource allocation decisions. However, decision making via the centralized SDN controller can incur 

significant signaling overhead. Therefore, a balance between the tasks for the centralized and local 

controllers, which depends on the type of tasks and the type of a slice, should be investigated. 

 

 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao1-2965100-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao1-2965100-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao2-2965100-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao2-2965100-large.gif
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Figure 2. The functional architecture of a network-slicing based AI-assisted next-generation 

RAN. 

The three blocks in Fig. 2, i.e., network topology, network protocol, and network resource 

orchestration, form a closed loop, which reflects the interplay between the two levels of network 

management: network planning and network resource scheduling [5,2]. Network planning, including 

the initial resource reservation for all slices, corresponds to the block of network topology in Fig. 2. 

Meanwhile, network resource scheduling consists of the network protocol and network resource 

orchestration blocks in Fig. 2, where the resource orchestration applies within each slice. As shown 

in Fig. 3, network planning admits slice requests, reserves resources for the admitted slices, and 

determines the placement of required VNFs in each slice. Based on the result of network planning, 

network resource scheduling further allocates resources in a slice to individual network users 

dynamically. The resulting SLA violation and resource utilization in the admitted slices are 

monitored, based on which the network planning may be adjusted in the future. 
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Figure 3. The interplay between network planning and network resource scheduling in the slicing 

based architecture. 

The role of AI in the network architecture includes exploiting the slice SLA monitoring data and the 

slice resource utilization data to facilitate slice deployment, slice adaption, and slice update. Due to 

the heterogeneous and dynamic characteristics of NGWNs, conventional approaches based 

completely on statistical models are likely to become intractable or too slow, if not both. The results 

are suboptimal if the statistical models are inaccurate. In addition, the required statistical models are 

unavailable for many new use cases and emerging applications. By contrast, AI-based approaches can 

potentially make use of the aforementioned monitoring data for both slice and network performance 

optimization. Through the application of AI for data analysis and decision making in both the 

centralized and local SDN controllers, the slicing based architecture in Fig. 1 can be empowered by 

AI. 

In the following sections, we investigate the RAN slicing framework, RAT selection automation, and 

content caching and delivery, respectively, under this AI-assisted slicing based network architecture. 

III.RAN Slicing Framework 
RAN slicing is deemed as the most promising technology in 5G networks and beyond, by providing a 

flexible and scalable network architecture to support a variety of services attached to manifold QoS 

requirements. By slicing the shared physical wireless networks into multiple isolated logical 

networks, RAN slicing can dynamically and elastically allocate network resources to provide tailored 

services for isolated logical networks. Building on the shared physical network infrastructure, RAN 

slicing is a cost-effective solution for network management. A study reported that RAN slicing can 

reduce capital expenditure (CapEx) and operational expenditure (OpEx) by up to 60 billion USD 

worldwide within the next five years [48]. These benefits motivate the study on RAN slicing for 

NGWNs. Extensive industry efforts have been devoted to RAN slicing framework ratification. For 

example, network slicing has been introduced as one of the key features of international mobile 

telecommunication (IMT)-2020 network [3]. The 3rd generation partnership project (3GPP) has 

conducted extensive studies on the slicing based architecture for 5G networks [5]. Multiple proof-of-

concept systems on RAN slicing have been developed and evaluated based on real-world network 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao3-2965100-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao3-2965100-large.gif
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traffic data. In this section, we first present the research challenges of RAN slicing. Then, existing 

works on RAN slicing are reviewed, which are summarized in Table 2. Finally, potential benefits and 

challenges of emerging AI-based RAN slicing are discussed. 

TABLE 2 Summary of Literature on RAN Slicing 

 
 

A. Research Challenges in RAN Slicing 

The RAN slicing in NGWNs can be divided into two steps: 1) Slice creation – Various over-the-top 

services with different QoS requirements request for creating slices to guarantee service isolation. 

After receiving a slice creation request, the network controller decides to accept or reject the request 

based on the availability of network resources. Once a slice is admitted, a new slice will be created 

based on the slice templates and network function instances; and 2) Resource orchestration – Network 

resources are allocated to admitted slices in order to meet their SLAs. Since emerging real-time 

mobile services, such as virtual reality (VR), augmented reality (AR), and autonomous driving, may 

consume multiple-dimensional resources (communication, computing and caching), a slice would be 

allocated with multiple virtualized network resources. These virtualized network resources would be 

mapped to the physical network infrastructure via a resource mapping algorithm. An illustrative 

example of the RAN slicing is shown in Fig. 4. The NGWNs become more complicated due to 

diverse network resources, heterogeneous network topology (e.g., cellular BSs, drone BS, WiFi APs), 

and differentiated QoS requirements (e.g., URLLC, eMBB, mMTC1). These characteristics create 

challenges for RAN slicing to support diverse services. 

 

 

Figure 4. The RAN slicing in NGWNs. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao.t2-2965100-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao.t2-2965100-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao4-2965100-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao4-2965100-large.gif
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The goal of RAN slicing is to provide customized services for mobile users with differentiated QoS 

requirements in heterogeneous networks. Hence, the key issue of RAN slicing is how to efficiently 

allocate network resources while meeting the user QoS requirements. As shown in Fig. 5, multiple-

dimensional network resources of the shared network infrastructure are allocated to each slice in a 

slicing window.2 Based on a priori service-specific traffic statistics, the communication resources can 

be sliced in terms of radio spectrum bandwidth, the computing resources can be sliced in terms of 

CPU computing power, and the caching resources can be sliced in terms of storage unit for each slice. 

Hence, RAN slicing should jointly allocate multiple network resources (e.g., communication, 

computing, and caching) to optimize the network utility, while satisfying the differentiated QoS 

requirements of customized services. Due to the heterogeneous network infrastructures and 

differentiated QoS requirements, RAN slicing faces the following unique challenges: 

• Resource interplay – Since a service may consume multiple network resources, there exists an 

inherent tradeoff among the network resources. For example, in computing offloading 

services, the service latency consists of two elements: task transmission latency and task 

processing latency. If a user associates with a remote MEC server having abundant computing 

resources for task processing, a high task transmission latency will incur. On the other hand, 

if a user associates with a nearby MEC server having insufficient computing resources, it 

takes a longer time for task processing. In such a manner, the allocation of computing and 

communication resources is coupled with each other in the exemplary computing offloading 

services. Similarly, the allocation of multiple network resources is intertwined, which 

complicates the RAN slicing. A joint multiple network resource allocation scheme should be 

judiciously designed to maximize network welfare; 

• Strict QoS requirements – Compared with traditional 4G networks, 5G networks and beyond 

have stricter QoS requirements, including a higher throughput and a lower latency. 

Especially, the typical URLLC service in 5G requires ultra-high reliability (e.g., 99.999%), 

which is much stricter than that of other services. In addition, the payload of data packets in 

URLLC services is usually small, such as 32 bytes [2]. The transmission performance of 

short-length packets cannot be characterized by the traditional Shannon theory which is 

suitable for long-length packet transmission due to a large transmission overhead. Instead, the 

finite block length channel coding theory should be applied to characterize the achievable rate 

for short-length packets [3]. Traditional QoS provisioning is unsuitable for short-length 

packet URLLC services with ultra-high reliability. Thus, an accurate QoS provisioning for 

URLLC services is desired in the RAN slicing framework; 

• User mobility – Due to the high network density, users may frequently move out the coverage 

of its associated network infrastructure, which results in a dynamic network topology. For 

example, high-mobility vehicle users can trigger handover frequently. The dynamic network 

topology changes the service traffic distribution, rendering previously optimal slice allocation 

suboptimal over time, degrading network performance, and may even violate users’ QoS 

requirements. When the network performance degrades to a threshold, adjusting existing 

slices or creating new slices will be triggered, which incurs slice reconfiguration overhead. 

Thus, dynamic yet efficient RAN slicing to accommodate user mobility remains a challenging 

issue. 
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Figure 5. The network resources of the shared network infrastructure are allocated to each slice via RAN 

slicing in each slicing window. 

B. Existing Approaches 

Extensive research efforts have been devoted to RAN slicing in different contexts due to its 

advantages in reducing network operation cost and improving resource utilization. Based on the 

known service-specific traffic statistics, a communication resource slicing strategy is proposed to 

support both machine-type users and mobile users, by allocating the spectrum in heterogeneous 

networks [2], in which bandwidth resource and user association are jointly allocated to maximize 

network utility. The results show that the proposed slicing strategy can effectively boost the network 

utility compared with benchmark schemes. A communication resource slicing strategy is developed to 

provide customized services in the context of vehicular networks [44]. These works mainly formulate 

a RAN slicing problem as an optimization problem with the objective of maximizing network utility, 

while satisfying the QoS constraints of admitted slices. By resorting to optimization theory, these 

complicated optimization problems can be solved by classic iterative optimization algorithms. 

Another line of work focuses on the communication resource slicing from the perspective of a 

network operator with an objective of maximizing the operator's revenue in different scenarios, such 

as in cellular networks [6] and indoor neutral-host small cell networks [4,6]. Sub-optimal algorithms 

are applied to solve these complicated slicing problems. The existing works  address the 

communication resource slicing from different perspectives. With emerging services and new use 

cases, further investigation is needed for RAN slicing that incorporates multiple-dimensional network 

resources. However, a multiple-resource slicing problem is much more complex than an individual 

resource slicing problem, taking account of network dynamics in traffic load and user mobility. In 

addition, existing works mainly deal with services attached to relatively loose QoS requirements, and 

hence developing RAN slicing to support strict URLLC services requires further investigation. In 

summary, model-based optimization methods are widely applied to solve RAN slicing problems, 

which can effectively manage resources in a small-scale network under simplified network statistical 

models. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao5-2965100-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao5-2965100-large.gif
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Existing model-based optimization methods suffer from two limitations: i) the prerequisite of a 

priori accurate traffic model – Service demand statistic models are usually assumed to be known in 

advance and accurate in most of the existing works, such as a known Poisson process to model service 

traffic of mobile users, which do not hold in practical time-variant wireless networks, especially in 

highly-mobility scenarios; and ii) high computational complexity – With the dense deployment of 

wireless networks, efficient RAN slicing for a large-scale network (e.g., tens to hundreds of BSs and 

APs) is required. Applying existing iterative model-based optimization methods can be unsuitable 

since the computational complexity greatly increases with the network scale, such that slicing 

algorithms will take a long time to converge. These limitations undermine the practicality of the 

existing model-based optimization methods. Hence, an efficient RAN slicing strategy for large-scale 

networks without accurate a priori traffic model, is of paramount importance. 

C. AI-Based RAN Slicing 

With the development of advanced AI techniques, model-free AI-based methods become promising 

techniques to provide potential benefits to address the difficulties with unknown traffic models and 

high computational complexity. In the following, the potential benefits and challenges of AI-based 

RAN slicing are discussed in detail. 

AI-based methods can provide two potential benefits for RAN slicing. On one hand, we can use AI-

based methods to provide accurate service-specific traffic prediction. Only with such accurately 

predicted service-specific traffic, RAN slicing can effectively facilitate network resource allocation to 

accommodate service demands in the near future. Recent studies show that AI-based methods, such as 

deep neural network (DNN) and long short-term memory (LSTM), are capable of accurately 

forecasting service-specific traffic load. For example, a DNN is used to predict aggregated data traffic 

in cellular networks based on historical service requests in. For fine-grained service-specific traffic, a 

prediction model based on a modified LSTM network is presented in to accurately predict the average 

traffic load, while a deep learning framework is proposed for the maximum service traffic prediction 

in , which can help to reduce resource over-provisioning and SLA violations. Based on historical user 

service requests and a known user mobility model, Sciancalepore et al. develop an unsupervised 

learning based forecasting module to predict service traffic load, with the traffic load prediction 

accuracy depending on the accuracy of the user mobility model. The existing preliminary studies 

illustrate the potential of an AI-based prediction method to accurately capture service traffic patterns. 

Such an accurate online service-specific traffic prediction can help to eliminate the requirement of a 

priori accurate traffic modeling in RAN slicing. 

Moreover, AI-based methods can facilitate efficient resource allocation in RAN slicing. An online AI-

based resource allocation decision process has the potential to achieve a low complexity after an 

offline training procedure, which addresses the high computational complexity challenge in the 

conventional model-based optimization methods. Recently, extensive research works have shown that 

AI-based methods can be widely applied in solving complicated resource management problems in 

wireless networks, such as power allocation for the interference management [7,5], resource block 

allocation in cloud radio access networks (CRANs) [7,6], SBS on/off scheduling in cellular 

networks [7,4], and computing task offloading in space-air integrated networks [7,7]. In general, the 

resource allocation problem is formulated as a Markov decision process (MDP), and an RL 

framework is developed for the MDP problem to make online decisions. As the essence of RAN 

slicing can be viewed as an optimization problem with the objective of maximizing network 

performance under constraints of satisfying QoS requirements, RL-based methods can be applied. 

In [4,5], an RL algorithm is presented to determine the optimal set of admitted slices in order to 

maximize the welfare of the infrastructure provider (e.g., 5G broker). Note that traditional RL 

methods, such as Q-learning, suffer from the curse of dimensionality, which are only suitable for 

RAN slicing problems in small-scale networks. Deep RL methods incorporate deep learning networks 

in the RL framework can effectively address the complexity issues in large-scale networks. 

Chen et al. present a deep RL learning based scheduling strategy to minimize service latency in a 
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sliced RAN [4,7], using a modified deep RL method for computing power allocation and task 

transmission scheduling. An enhanced RL method, deep deterministic policy gradient (DDPG), is 

proposed to dynamically slice the shared time-varying spectrum resources in indoor small cell 

networks [4, 6]. In addition to the centralized network resource management for RAN slicing in, 

decentralized RAN slicing can be formulated as a multi-tenant RAN slicing problem, in which 

multiple tenants (i.e., slice owners) contend for network resources from an infrastructure provider. 

The multi-agent RAN slicing problem aims at bidding and allocating network resources to maximize 

the revenue of each tenant. The multi-tenant RAN slicing problem can be modeled as a non-

cooperative stochastic game and solved by a stochastic learning algorithm. A deep learning approach 

based on a double deep Q network can be applied for jointly allocating communication and computing 

resources to maximize the welfare of each tenant. The existing studies demonstrate the potential of 

using AI-based approaches to address the RAN slicing problem in various contexts. 

On the other hand, AI-based RAN slicing faces its unique challenges, such as achieving strict QoS 

guarantee within the RL framework. How to satisfy the QoS constraints in the RL framework requires 

innovative solutions in the RAN slicing optimization. Due to limitations of the Q-value based 

mathematical modeling, the QoS requirements are usually integrated into the reward function by some 

predefined weights [7]. In such a manner, strict QoS requirements cannot be guaranteed unless 

appropriate weights for the QoS requirements are determined, which is difficult to achieve, especially 

when the QoS requirements are multi-dimensional. Most of existing solutions can only satisfy soft 

QoS requirements [6]. Developing an efficient RL-based RAN slicing algorithm while satisfying strict 

QoS requirements requires further investigation. 

IV.Automated RAT Selection 

In NGWNs, multiple types of RAT will coexist. Thus, proper RAT selection for each user is essential. 

RAT selection is closely related to user association, which associates each user with specific APs.3 In 

the simple scenario of a homogeneous network, RAT selection is basically user association. However, 

in a general scenario with heterogeneous networks, associating a user to an AP requires both the 

selection of an RAT and the selection of a specific AP given the chosen RAT. In this section, we use 

“RAT selection” as a synonym of “user association” in the case of heterogeneous networks. 

User association has been widely studied for various network scenarios, especially in the case of 

homogeneous networks. Existing studies focus on user association in a multi-tier cellular network [7], 

under particular physical-layer settings (such as MIMO [8], mmWave [6], energy harvesting [1]), and 

other networking environments (such as self-organizing networks [2], D2D communications [3], and 

UAV-to-ground communications [9]. Many performance metrics, including spectrum efficiency, 

energy efficiency, and energy consumption, are considered in the study of user association [4]. 

In the rest of this section, we focus on RAT selection in slicing based NGWNs. Firstly, we give an 

overview of conventional user association schemes. Then, we introduce RAT selection in network-

slicing based networks. After that, we review and discuss AI-assisted RAT selection. 

A. Conventional User Association Approaches 

As shown in Fig. 6, conventional user association can be divided into three categories: centralized, 

distributed, and hybrid based on control paradigm A global controller is assumed in the case of a 

centralized solution to collect network-related information. The centralized method determines a 

network association strategy by formulating the problem based on a Markov model or through a 

centralized optimization. Using a Markov model, the network selection is usually formulated as a 

joint user association and mobile traffic offloading problem. The target is to obtain a desirable 

admission and offloading policy to optimize certain system-level metrics such as service blocking 

probability. In the centralized optimization approach a selection algorithm is executed each time when 
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association decisions need to be updated. The target is to optimize system-level performance such as 

energy efficiency, spectrum efficiency, load balancing, or system aggregated utility, subject to 

network resource availability and user association constraints. However, both Markov model-based 

and optimization-based centralized user association approaches have their own limitations. In the 

Markov-based approach, user mobility and handoff are generally ignored (i.e., the users are assumed 

to associate with the same AP until the end of a service session). Moreover, users are treated without 

any differentiation, i.e., no consideration of user preference and service priorities in general. On the 

other hand, the centralized optimization method suffers from scalability and efficiency issues. In 

addition, the optimality is usually achieved at the cost of signaling overhead in the information 

gathering and the policy enforcement stages. 

 

 
Figure 6. The classification of RAT selection based on the control paradigm: Centralized, distributed, 

and hybrid. For distributed user association, the case of mobility triggered network selection is 

illustrated here as an example. 

Distributed user association has been studied using various methods, including multiple attribute 

decision making (MADM) , MDP, fuzzy-logic , game theory (e.g. cooperative game [1], and non-

cooperative game . Under the distributed setting, network attributes are collected or estimated at the 

user side. The user then chooses the AP with the best performance. Compared to the centralized 

method, the distributed selection scheme can usually be implemented with lower complexity. Further, 

a decentralized approach can reduce the signaling overhead at the cost of suboptimal performance. 

The limitations of distributed selection schemes include that i) non-cooperative user association can 

lead to network load oscillation when multiple devices try to associate and disassociate with the same 

AP concurrently; and ii) the design of effective information exchange is necessary for distributed 

cooperative user association but can be very challenging. 

The hybrid selection can achieve a tradeoff between network performance and signaling overhead, 

which can be implemented as a mixture of centralized and distributed control. In Elayoubi et al. solve 

the user association problem using a Bayesian game. Two types of players are involved, which 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao6-2965100-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao6-2965100-large.gif
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represent the different networks and the users. Each user selfishly maximizes their own utility without 

any user-level cooperation, while each network cooperates with users within its coverage by 

broadcasting its current status (such as the traffic load), to maximize the total utility of its users. Such 

a design may result in multiple Nash equilibria. Therefore, the information that the network needs to 

broadcast should be carefully designed, so that an equilibrium with a high efficiency can be achieved 

B. RAT Selection in Slicing Based Heterogeneous Networks 

Figure 7 shows an envisioned scenario of NGWNs in the presence of a SDN controller. In such 

networks, multiple types of RATs, multiple types of APs, multiple types of UEs with various service 

requirements, and multiple types of resources jointly contribute to an unprecedented level of 

heterogeneity. Next, we discuss the main differences of RAT selection under the slicing based 

NGWNs from that in conventional user association. 

 

 
Figure 7. An illustration of RAT selection with multiple services in heterogeneous wireless networks 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao7-2965100-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao7-2965100-large.gif
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Firstly, from the control perspective, the capacity of the SDN controller for information collection and 

centralized control should be leveraged in the RAT selection. It can be seen from Fig. 7 that a global 

view of the network is enabled through the deployment of the SDN controller. Network status 

information such as current network loads, user service demands, and user distribution, as well as user 

status information such as user location, speed, and moving direction can be obtained by the SDN 

controller for centralized decision making. However, such centralized control is not scalable and can 

yield significant signaling overhead. Therefore, a hybrid control architecture is preferred in the 

NGWNs, in which users make distributed RAT selection decisions at a small timescale, while the 

centralized control is triggered at a large timescale. 

Secondly, given the SDN/NFV enabled network slicing architecture [4], each slice is assigned with 

only a portion of physical resources based on its target services. Therefore, the resource availability 

and resource utilization level of each slice become a concern and need to be accounted for properly 

via the RAT selection. Further, considering network slicing, it is possible that a user is involved in 

multiple network slices [93]. The RAT selection in such a case requires further investigation. 

Thirdly, new types of network resources are emerging, which can affect the RAT selection. 

Traditional network infrastructures (e.g., cellular BSs and WiFi APs) only have the communication 

functionality. As the networks continue to evolve, these infrastructures will support more and more 

caching and computing services. Such a trend leads to diverse network resources as compared to that 

in previous generations. In addition, an unprecedented level of network and service heterogeneity is 

expected and, correspondingly, the complexity of solving the RAT selection problem will increase in 

the NGWNs. 

C. Research Challenges 

Based on the preceding discussion, several research challenges related to RAT selection in the 

NGWNs are identified as follows. 

1) Service Modeling 

The dependence between service requirements and the corresponding demands for multi-dimension 

resources has not been modeled explicitly in conventional user associations. In the literature, users 

can either select the network based on a radio link quality, i.e., the always-best-connected (ABC) [4], 

or associate with a nearby AP that has the content of their interest in its cache [5] or a nearby AP that 

has high computing capability [1]. However, the network selection in NGWNs should be determined 

based on multi-dimensional resource availability for communication, caching, and computing, 

considering that different services can have totally different requirements on these three types of 

resources. For example, video streaming services require most attention to the communication 

resources (e.g., the link quality and the available bandwidth); vehicles downloading high-definition 

maps should connect to an AP which caches contents of their interest; for VR applications [6] (e.g., 

Pokémon GO), computing resources are of the foremost concern. As a result, the demand for different 

resources will impact the RAT selection. 

Some recent works provide ideas on how to model tasks of different services. Mao et al. model a 

computing task using three parameters: offloaded task size (in bits), computation intensity (in CPU 

cycles per bit), and completion deadline [7]. A VR related task modeling with three-dimension 

resources is proposed in [8], in which cached contents are used as inputs of the computing stage. 

However, a general model to characterize the dependence between service requirements and multi-

dimensional resources is not available yet. The complexity in developing such a service model comes 

from the variety of services and their diversified requirements. 
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2) Resource Slicing 

Different RATs can use different resource allocation schemes and yield different resource utilization. 

Therefore, resource allocation and RAT selection are mutually dependent, and joint network resource 

allocation and user association should be considered. Existing studies on joint computing resource 

allocation and user association joint caching resource allocation and user association  or joint 

allocation of the communication, computing and caching resources and user association, do not 

consider network slicing. On the other hand, current works on network slicing consider focus on one 

type of RAT and/or only the communication resource which limits their applications in NGWNs with 

multiple RATs and multiple resources. 

After RAN slicing in the planning stage, multiple slices are established. Within each network slice, 

RAT selection adjustments may be required in the scheduling stage due to user mobility, network load 

distribution dynamics, scheduled power-off of APs  and so on. For such adjustments of RAT selection 

within a slice, it may be possible to extend some existing works on user association without 

considering network slicing, to develop an RAT selection adjustment solution. 

3) User Mobility 

Mobility is an essential issue in the RAT selection. A properly designed association algorithm should 

avoid unnecessary handoffs, since a re-association procedure incurs extra signaling and excessive 

execution latency. To avoid unnecessary handoffs, RAT selection can be based on predicted user 

mobility. Many state-of-the-art prediction algorithms have been proposed to estimate user trajectory, 

cell dwelling time, and other mobility-related information, using data-based  and model-

based  mobility prediction methods. With the prediction of user mobility, a proactive network 

resource adjustment can be designed to achieve a timely and smooth handoff. For instance, the 

networks can adaptively or proactively adjust their resource allocation, using a mobility-aware 

computing strategy  and/or caching strategy . However, these mobility-aware resource allocation 

strategies assume that the user association policy is known and fixed, which is inappropriate in the 

NGWNs. In order to efficiently utilize network resources, user association should be considered 

jointly with mobility-ware network resource allocation. For example, a joint user association and 

content placement in an edge caching scenario should account for user mobility . To jointly consider 

both mobility and resource allocation, the RAT selection problem is much more complex than the 

conventional one. 

Moreover, due to user mobility, a communication or computing task may not be completed while a 

user is temporally connected to an AP. As a result, a task handover from the original AP is necessary. 

For example, when a user is moving out of the coverage of an AP and thus cannot finish downloading 

a content, it should connect to another AP that caches the same content if possible, to continue the 

downloading task. Similarly, in order to preserve service continuity in a computation task, the original 

task can be decomposed into several subtasks. Each subtask is offloaded to an AP with computing 

capacity, so that it can be finished before the user moves out of the coverage of its current AP. 

Therefore, the current user task completion status should be incorporated in the RAT selection in the 

scheduling stage. 

4) Multi-Connectivity 

In addition to the multi-mode capacity which allows only one RAT connection at any time, multi-

connectivity/multi-homing terminals have the ability to support multiple RAT connections 

simultaneously  Using concurrent connections for a single service has the benefit of improving service 

reliability . The multi-homing related RAT selection has been investigated from different 

perspectives. From the perspective of networks, the service operator aims to optimally allocate 

downlink (DL) bandwidth among multiple radio connections to support users with different services 

in a multi-RAT environment . In contrast, from the perspective of a single user, the goal is to enhance 

QoS by optimally distributing packets among multiple radio interfaces during an uplink (UL) 

transmission. In general, an RAT selection problem for multi-homing terminals is much more 
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complicated than a problem of multi-mode, since we need to determine how many connections to 

establish and which set of the available radio networks to connect for the user. Preliminary work on 

multi-homing connection does not consider network slicing and focuses only on communication 

resources . 

D. AI-Based RAT Selection 

Here, we first review optimization-based solutions, and then the learning-based solutions, followed by 

a discussion of the challenges in applying AI to RAT selection. Table 3 summarizes a few related 

works on user association in heterogeneous networks. Some works adopt optimization techniques, 

while others use learning-based approaches. 

TABLE 3 Summary of Literature on User Association in Heterogeneous Networks 

 
 

Optimization-based approaches for solving user association problems can be categorized into two 

classes: deterministic optimization based approaches and stochastic optimization based approaches. 

Both classes have the following limitations. Firstly, user association related problems, in general, are 

formulated as combinatorial optimization problems, which are non-convex and usually NP-hard. 

Therefore, applying optimization-based methods can result in significant computation latency and 

overhead. Even if the optimal solution can be found, the cost of finding the solution can be prohibitive 

as the network size or the set of service types grows due to the exponentially increasing complexity. 

Secondly, optimization-based approaches rely on the prior knowledge of the network (e.g., network 

topology, user density, mobility, channel statistics, and service requirements) and/or the assumptions 

made for mathematical tractability (e.g., Poisson arrivals, exponential service time, uniform user 

distribution, and so on). When network dynamics vary, established theoretical models may no longer 

be applicable and the performance of a previously obtained association solution can degrade 

significantly. 

Different from optimization-based approaches, model-free RL provides an alternative approach for 

finding the optimal solution of a problem through “trial and error” in the interactions with the 

networking environment. According to the type of the learning agent, RL-based RAT selection can be 

classified into two classes. The first class chooses individual users as the learning agents. In, a 

distributed Q-learning-based handoff is proposed to optimize the long-term discounted rewards of 

users. RL can also be combined with a traditional RAT selection algorithm for performance 

improvement. In, RL is adopted by users to learn the optimal cell range extension bias with the global 

objective of minimizing the total number of devices in outage. In the scenario of edge computing, RL 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao.t3-2965100-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao.t3-2965100-large.gif


International Journal of Future Generation Communication and Networking 

Vol. 13, No. 3, (2020), pp. 684-708 

 

702 ISSN: 2233-7857 IJFGCN  

Copyright ⓒ 2020 SERSC 
 

can help with user association decisions to improve computing energy efficiency . The second class of 

RL-related works assume the APs as the learning agents. For example, the BS can be the learning 

agent to achieve load balancing through user association in a vehicular network . 

There are technical challenges in developing ML-based approaches for solving the RAT selection 

problem. The underlying MDP model may not accurately capture the RAT automation problem. It is 

possible that only partial information is available, or there exist observation errors. In such cases, a 

generalized partially observable MDP (POMDP) model can be adopted. Also, deriving models and 

metrics to characterize the performance, or even a performance bound, of the learning algorithm is not 

an easy task. Most learning algorithms are evaluated only numerically. Sun et al. present proof on the 

performance bounds for their proposed learning algorithm in [6]. However, a unified framework on 

the convergence and performance analysis of RL is yet to be developed. 

V. Mobile Edge Caching and Content Delivery 
As mentioned previously, resources in NGWNs will extend beyond communication resources and 

include caching resources. Mobile edge caching leverages storage spaces at the network edge to cache 

popular contents within the RAN. As a result, mobile edge caching can help to reduce content 

retrieval time for users and alleviate backhaul congestion for the network [115]. As mobile edge 

caching is usually limited by the cache size, it is necessary to optimize caching strategies for maximal 

caching resource utilization. In this section, we present research challenges of mobile edge caching in 

conventional and network-slicing based wireless networks, respectively. The related research works 

are reviewed, and future research directions on AI-based mobile edge caching are discussed. 

A. Research Challenges 

There are two main research issues in mobile edge caching, i.e., content placement and content 

delivery. Content placement determines which contents to be coached at the edge, while content 

delivery determines how to deliver cached contents to users. The first major challenge in content 

placement roots from time-variant content popularity and/or an evolving content catalogue. If the 

content popularity could be accurately estimated, the problem of maximizing cache hit rate would be 

simple. However, it can be very difficult to predict the content popularity, especially when the 

popularity demonstrates spatial-temporal variations. The second challenge in content placement is due 

to the multi-tier cache system with overlapped spatial coverage in heterogeneous wireless networks. 

When content delivery is considered, the joint optimization of communication and caching strategy, 

which corresponds to a complex decision-making problem, becomes another major challenge. 

NGWNs demonstrate heterogeneity in both resources and service types. In the network-slicing based 

architecture, the resources in RAN, including communication, caching, and computing resources, are 

orchestrated and sliced to support the corresponding virtual networks with QoS guarantee. An 

overview of caching-centric resource management in a network-slicing based architecture is 

illustrated in Fig. 8. After slicing the resources in the planning stage, the resources will be further 

scheduled in each slice to improve user service experience. In resource scheduling, in addition to 

content placement and content delivery, joint caching and communication resource management 

should be taken into account. Under this network-slicing based architecture, new challenges in content 

placement and content delivery are summarized as follows. 
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Figure 8. Overview of caching-centric resource management in a network-slicing based architecture. 

• Heterogeneity among different slices: The physical cache for an edge entity can be sliced into 

several logical caches for serving different applications with diverse QoS requirements. 

Different from the conventional caching, content requests are accommodated into different 

slices in NGWNs. User access patterns and popular contents in different virtual networks can 

have distinct characteristics. For example, in IoT applications, users usually fetch contents 

from a static content catalogue periodically while, in mobile applications, users typically 

request contents from an evolving catalogue. Hence, designing a customized content 

placement policy to support diversified virtual networks is challenging and requires further 

investigation; 

• Dynamic cache size: By resource virtualization, the cache size for a slice can be modified as a 

result of dynamic slicing on a large timescale. The cache placement policy should be updated 

dynamically to adapt to the variable cache size. When the cache size allocated to a slice is 

sufficient, contents with a large size can be cached to reduce the backhaul usage. Otherwise, 

popular contents with a small size should be cached to improve the cache hit rate. Thus, in 

addition to time-variant content popularity and evolving content catalogue, new uncertainty is 

introduced due to the variable cache size, which can make the content placement problem 

intractable; 

• Multi-resource allocation: MEC is expected to be a basic element in NGWNs. The contents 

cached by an edge will not only include popular contents such as videos, but also include the 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao8-2965100-large.gif
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essential files for implementing computing functions. To improve the computing service 

performance, the allocation of computing, caching, and communication resources should be 

jointly optimized in terms of content delivery. However, the multi-resource allocation 

problem can be too complicated to solve in real-time using model-based approaches. 

B. State-of-the-art Caching Solutions 

Here, we review existing works on content placement and content delivery. For content placement, we 

summarize research efforts on content updating strategies at a single caching server. For content 

delivery, we focus on research works for joint caching and communication resource management. A 

summary of the literature is provided in Table 4. 

TABLE 4 Summary of Literature on Caching Resource Management 

 
1) Content Placement 

Content popularity is time-varying in general and, hence, the cached contents stored at a server need 

to be updated dynamically. The main goal of content placement is to maximize the cache hit 

probability. As illustrated in Fig. 8, there are two types of caching policies to update the contents in a 

cache, namely the reactive caching policy and the proactive caching policy. 

In a reactive caching policy, the edge node determines whether or not to cache a content after a 

request for that content arrives. A common assumption is that the content popularity follows a 

stochastic distribution, such as Zipf distribution . However, the popularity of contents varies over 

time, and different types of contents can exhibit a variety of popularity evolution patterns. To adapt to 

non-stationary traffic and content popularity, content updating policies have been proposed. For 

example, the least recently used (LRU) policy replaces the least recently requested content in the 

cache when the cache is full. To improve the cache hit rate, the content popularity can be estimated 

according to the content request during a period of time. However, in practice, the reactive caching 

policies adapt slowly to changes in content popularity . 

Proactive caching policies aim to prefetch popular contents that are likely to be requested by users 

ahead of time. Therefore, proactive caching can mitigate backhaul usage if prefetching is scheduled 

during off-peak hours. Proactive caching is illustrated in the bottom part of Fig. 8, where historical 

content requests used for predicting popular contents are added into a data set as records. Future 

content requests can be predicted by exploiting the spatio-temporal association among the records in 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao.t4-2965100-large.gif
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the data set, such that the edge server can proactively cache contents for improving the cache hit rate . 

Another category of solutions does not directly predict requests, but formulates an MDP problem to 

find an optimal content placement policy which maximizes the cache hit rate in the long term . Since 

the content placement problem has large state-action space and unknown state transition probabilities 

caused by a dynamic network environment, it is difficult to solve the MDP problem by the 

conventional dynamic programming method. RL can be utilized to solve the MDP problem according 

to the reward feedback from the network environment. However, RL has some limitations in solving 

the content placement problem. The first limitation is the Markov property of the underlying MDP, 

which is assumed when RL is applied. As a result, it is difficult for RL to explore the temporal 

correlation in a sequence of historical user requests. Second, most works using RL for optimizing 

caching strategies assume that the catalogue of contents is known in advance, which can be unrealistic 

for the scenario in which the content catalogue changes dynamically. Therefore, in the case when new 

contents dynamically emerge, the RL based approaches in most existing studies, such as , cannot be 

applied since they cannot predict the popularity of new contents. One potential solution to handle a 

changing content catalogue is to add or remove contents based on their lifetime, as proposed in, so 

that caching decisions can be made for an evolving catalogue of contents. However, such an approach 

yields another challenge, i.e., estimating the lifetime of contents. In addition, existing works predict 

content requests according to all content requests received at the server, without considering the type 

of services or applications. However, such granularity is not fine enough in a network-slicing based 

network architecture as different slices may have different traffic and content popularity patterns. 

In summary, both reactive and proactive content placement approaches aim to improve the cache hit 

rate. A reactive caching policy can handle a varying content catalogue or evolving content popularity 

via an online content update, while a proactive caching policy exploits historical user requests and 

predicts the content popularity offline. Since the pattern of the evolving content popularity can 

become more evident after the network resources are sliced based on service types, proactive caching 

can be a potential approach to find a customized content placement policy for virtual networks. In 

addition to the spatio-temporal features of user requests, other features can be excavated to further 

improve the performance of service-specific content request prediction, such as the QoS requirements 

and application types for the corresponding virtual network. In addition, existing works generally 

assume that all contents have an identical size, which is not practical. The content size can 

substantially affect caching performance due to the dynamic slicing of the physical cache. Therefore, 

the trade-off between the backhaul usage decrease and cache hit rate improvement needs to be studied 

in the context of dynamic slicing of the physical cache. 

2) Content Delivery 

The main goal of content delivery is to reduce content transmission time. In order to achieve this 

objective, except caching popular contents in the edge servers, the average communication delay 

between users and the edge server should be minimized. A trade-off between the transmission delay 

and caching service coverage is discussed in, where a cache-enabled UAV is deployed as an edge 

server. When the UAV is deployed at a high altitude, it can cover a large number of users and reduce 

content delivery time for these served users. However, the data rate of content delivery from the UAV 

to the users can be low, due to the high altitude of the UAV. By contrast, when the UAV is deployed 

at a low altitude, the data rate can be improved, but fewer users can benefit from the cached contents 

due to the reduced coverage of the UAV. 

In a more general scenario, e.g., when there are multiple edge servers connected with each other, a 

dependency relation between cache and communication resources emerges across the servers. As 

shown in Fig. 9, in addition to determining which content to be cached, the cooperation among edge 

servers and the network topology should be considered in the content placement and delivery 

problem. The edge servers can cooperate with each other in content placement and delivery in order to 

improve the overall cache hit rate and, as a result, reduce the backhaul congestion. A user can access 

contents from both its own server and, via the relay of its server, other edge servers (shown as the 
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virtual link in Fig. 9). The joint problem of content placement and routing among the servers can be 

formulated as a mixed-integer problem, which generally has high complexity. For example, a 

Hopfield neural network (HNN) framework can be explored to solve the problem of routing without 

considering resource allocation in cooperative caching. However, solving the joint resource allocation 

and routing problem in a scalable manner for cooperative caching with multiple edge servers remains 

an open research problem. As the network topology becomes more complex in NGWNs, the 

association between users and edge devices should be considered, while deciding content placement, 

in order to minimize the content delivery delay. In this case, a user can connect with multiple edge 

servers that cache popular contents. The trade-off between caching diversity and spectrum efficiency 

is investigated in, while cooperative caching and transmission is considered in the context of 

coordinated multi-point transmission. In addition, with network topology dynamics, the optimal 

content placement and delivery decision can vary significantly. The network connectivity graph is 

analyzed in  for allocating content to multiple edge servers given the network topology and the 

content popularity. When the number of users increases, the optimal content placement policy 

becomes intractable. 

 

 
Figure 9. An illustration of the relation between caching placement and content delivery 

 

With the emergence of MEC in 5G networks, contents stored in the cache include the files and data 

for implementing various computing functions. To satisfy QoS requirements of MEC, the resources 

(including communication, caching, and computing resources) should be jointly optimized. As 

mentioned, RL is known for solving complex decision-making problems and has been adopted in 

existing studies to jointly allocate caching, computing, and communication resources. While the 

resulting caching strategies obtained using RL can achieve a near-optimal performance, they cannot 

handle an evolving content catalogue in general. Moreover, existing works assume that computing 

and caching resources can be allocated independently, while computing tasks can only be executed 

when the corresponding files and data are stored at the edge. Such dependency can further complicate 

the content placement and computing offloading decision. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao9-2965100-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8782711/8815895/8954683/gao9-2965100-large.gif
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In summary, the essence of content delivery is a multi-dimensional resource management problem. In 

a conventional caching scenario, communication and caching resources are jointly optimized to 

balance the content delivery time and the cache hit rate. In the network-slicing based architecture, 

computing resources at the edge are utilized to perform latency-critical tasks in virtual networks. 

Thus, the concept of content delivery is extended to computing offloading and execution. The multi-

resource allocation problem incurs high complexity in problem solving, while the conventional 

optimization techniques are hard to make real-time caching and offloading decisions. Moreover, the 

dependency among caching, computation, and communication resources needs to be further 

investigated. The caching performance is not only restricted by sliced caching resources (i.e., the size 

of logical caches), but also constrained by sliced computing and communication resources. Last, users 

with high mobility can fail to download the content from or offload their tasks to the edge due to 

intermittent connections. Thus, user mobility prediction should be incorporated to improve the 

performance of content delivery. 

C. Future Research Directions in AI-Based Caching 

Given the aforementioned challenges, next, we discuss the potential applications of ML for caching 

from three aspects: content popularity prediction in proactive content placement, dynamic content 

placement policy adjustment, and multi-resource allocation in content delivery. 

For content popularity prediction, ML based approaches, e.g., DNN, can extract features from 

recorded content request data to facilitate the content popularity prediction. In the network-slicing 

based architecture, a local SDN controller can be deployed to monitor content requests and associate 

the requests with user IDs, request time instants, and locations. Given a sufficiently large data set of 

request records collected by the controller, DNN can utilize the records for predicting the content 

requests in future. Compared with conventional statistical methods, such as linear regression or 

Kalman filter, DNN has the advantage of exploiting a large data set to make more accurate 

predictions. However, the performance of content popularity prediction can be degraded by many 

factors, such as an evolving content catalogue or time-variant content popularity. As a variant of 

DNN, recurrent neural network (RNN) has been widely adopted for prediction from historical data 

due to its ability to track time-variant patterns. Compared to the conventional neural networks, RNN 

applies internal memory to capture temporal correlations in the input data. Therefore, RNN has been 

adopted to track time-variant content popularity in the literature. In addition to the temporal 

correlation in the content requests, ML based approaches can be used to capture the spatial correlation 

in the requests. Convolution neural network (CNN) can be a potential tool for capturing such spatial 

correlations. Despite the various advantages, several issues need to be addressed while developing 

ML based approaches for caching in future communication networks. Firstly, while CNN and RNN 

have the potential to predict future content requests with a high accuracy based on spatio-temporal 

features, deploying CNN/RNN based prediction modules for content placement can lead to a high 

computation load. This, in turn, requires a characterization of the improvement in caching 

performance versus the resulting computation load. As a result, a trade-off between computation and 

caching performance needs to be investigated. Secondly, in the network-slicing based architecture, 

content requests are distributed into different virtual networks. Consequently, deploying one neural 

network as an open module that all slices can use is preferred in terms of complexity, but may not 

adapt to the specific characteristics of individual slices. By contrast, deploying one neural network for 

each slice allows a customized prediction module for each service or application, but can lead to 

prohibitive complexity. 

For caching policy adjustment, RL is a potential approach to update the content placement policy in a 

dynamic environment with flexible cache size for each slice and time-variant content request pattern. 

The instantaneous cache size, cached contents, requested content, etc., can be modeled as states, and 

the content update can be modeled as actions. The resulting MDP model with unknown state 

transition probabilities can explore RL techniques to find an efficient content updating policy . 

However, the assumption of an underlying MDP model, and the associated Markov property in state 
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transitions, can be impractical. The RL based approach may not fully capture the correlations of 

content requests over the time domain. In addition, as mentioned in Subsection V.B, the ML 

algorithm should be able to handle an evolving content catalogue while updating the caching policy. 

Devising such an ML algorithm without incurring significant complexity, e.g., having to deploy an 

additional module for predicting the lifetime of all contents, remains an open and challenging 

problem. 

For content delivery, deep RL has a potential to provide a tractable approach to coordinate and 

allocate multiple types of resources, including communication, computation, and caching. While the 

state-action space of multi-dimensional decision making in joint caching, computing, and 

communication resource allocation can be too large for conventional RL, deep RL adopts deep 

learning techniques to estimate policy and value function, and thus can handle the large state-action 

space from the joint allocation of multiple resources for content delivery. However, classic deep RL 

has limitations when dealing with constrained decision-making problems, in which the dependency 

among the resources exists and introduces constraints in resource allocation. For example, a user with 

a computing task to offload prefers an edge server that caches the data and files for this computing 

task. In such a case, the content placement at the edge server yields a constraint on the task offloading 

decision of the user. Constrained MDP can be a possible model for incorporating the constraints, 

while how to develop a deep RL based solution for the constrained MDP problem needs further 

investigation. 

VI. Conclusion 
In this paper, we have illustrated the network-slicing based architecture, focusing particularly on the 

RAN, and elaborated how AI can potentially empower this architecture for NGWNs. Through the 

investigation of three research problems, i.e., RAN slicing, automated RAT selection/user association, 

and content placement and delivery, we have demonstrated new challenges, as a result of the 

heterogeneity, dynamic environment, and/or strict and diversified service requirements, in network 

management and resource orchestration under the network-slicing based architecture. Most of these 

challenges cannot be addressed by directly extending existing research. Therefore, it is necessary to 

develop novel models, technique tools, and/or problem-solving approaches. Summarizing related 

research efforts, we have demonstrated the potential approaches and benefits in the application of AI 

for solving the three problems. Meanwhile, we have also noted the challenges of applying AI-based 

approaches, e.g., handling non-stationary network environment. Through the three considered 

problems, this paper takes an initial step towards understanding the development of models and 

algorithms for intelligent network management and resource orchestration in network-slicing based 

NGWNs. 
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