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Abstract 

In real world the path identification for autonomous robot in dynamic environment is difficult process. 

However, this paper introduce a reinforcement learning based double DQN learning model for 

autonomous robot to handle the problem of dynamic path identification. The experiment is performed to 

evaluate the effectiveness of the algorithm using the simulation tool Udacity. The fundamental idea is to 

determine the problem as state-action problem and discover the value for each state in its workspace. The 

performance of the model is examined in two different scenarios such as normal path and hill path. The 

results of the experiment confirm that the model shows better performance in normal path with an 

accuracy of 92% than hill path which is of 86%. Simulation results confirms that the reinforcement 

learning based model for autonomous robot provide better accuracy in dynamic environment for normal 

path than the hill path. 
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1 Introduction 

The autonomous robots creation is one of the important goal in robotics and its most important 

problems is a motion planning in the environment. The motion planning direct the robot from the original   

position (initial configuration) to the destination (goal configuration) without collision owing to the 

obstacle [1]. The motion planning consist of two category such as path planning and trajectory planning. 

The path planning comprises obstacles in the path without any collision in an environment. The robot 

path identification in the environment depends on the sensor input from the robot manipulator [2].The 

trajectory planning involves the velocity and time of the robot for identifying path to reach the goal state. 

There are various strategies available for solving the path finding problems. Some of them need the 

workspace to be two-dimensional and therefore the objects to be a plane figure. The foremost common 

strategies is square measure supported road-map, cell decomposition and potential fields. The main 

drawback of these approaches is that the majority of them turn out collision-free plane figure line methods 

and this type of geometric methods are suitable to avoid the collisions however not applied for non-

holonomic execution of the robot [3]. The techniques to create this method with non-holonomic 

constraints on the far side of the agent and therefore the atmosphere, will determine four main sub-

elements of a reinforcement learning system: a policy, a reward function, a value function, and optionally, 

environmental model. A policy defines the behavior of the agent’s at a particular time, a reward function 

indicates the goal of reinforcement learning, a value function specifies smartness within the long-standing 

time, and the model behavior in the environment [4]. This approach relies on reinforcement learning and 

is impressed on potential fields’ strategies. [5]. Subsequently, to plan the path within the environment 

collisions with degree optimum policy and it's worth perform square measure found by a reinforcement 

learning algorithm. This approach will avoid the matter of path generation and non-holonomic 

constraints, and provides a model of the environment wherever a path from any configuration to the goal 
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configuration is found[6]. In this paper, reinforcement learning based autonomous path finding method is 

proposed employing potential fields methods. Section 2 discuss about the reinforcement learning 

algorithm, Section 3 presents the hardware and software required for implementation and methodology 

used is discussed in Section 4.The experimental results are presented in the section 5 and section 6 

provide the conclusion.  

2 Reinforcement Learning 

In recent years, Reinforcement Learning (RL) is most popularly used in the fields such as robotics, 

intelligent decision making and decision analysis.RL is the real time learning method in which robot 

perform action based on the input received through environment interaction. Moreover, robot decides the 

action according to signal obtained from the environment and find the best movement over trial and error 

method[7].RL is based on the reward value which is received by interacting with the undefined 

environment. The agent is employed to enhance the reward value obtained from the surrounding 

environment. The robot can identify the optimal path even in the dynamic environment using RL method 

[8]. 

 

2.1 Background Knowledge 

The environment would lead the state to the following state and additionally offer the state 

reward supported by the action. RL helps to learn to make and modify the policy supported a series of 

state-action-reward procedure. 

 

Figure.1 Structure of Reinforcement Learning Model 

Some of the important term and notation used in figure 1 and the following paragraph are specified 

here. 

 State set S = f s1, s2, s3, .... g  

 Action set A = f a1, a2, a3, .... g 

 

 State transition probability function T = T(s0 j s, a) = P[St+1=s0 j St = s, At = a]. This means the 

probability of transition from state s to s0 when taking action a. 

 

 Reward function r = r(s,a) = E[Rt+1j St = s, At = a]. This means the expected value of reward 

given s and a. 

 

 Policy = (a j s) = P [At = a j St = s]. This means the probability of choosing a given the s. 

 Discount factor 2 [0; 1] 
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2.2 Learning Process 

The agent learns from the reward for every action and it tends to assign every action a Q value and 

decision this action-value operate q(s, a). If the agent is at state s and with four decisions of action, then it 

tend to get four Q value for this state s. The Q square measure at the start position set to zero and may be 

updated by the reward that it incline to simply encounter.Moreover, it will take the longer term reward 

into consideration just in case it would be fooled by the present reward [9]. It is close to one, it means that 

the long term reward is sort of as necessary because of the current reward. It will categorical the mixture 

of current reward and therefore the future reward by the subsequent equation: 

qπ(s,a) = r(s,a) + γPs0 ∈ ST(s0 | s, a) Pa0 ∈ Aπ(a0 | s0) qπ(s0, a0)                  (1) 

State s0 represents next state relative to the current state s. The action a0 goes to be designated before 

the agent extremely in state s0, therefore it want to require an expectation of Q (s0; a0) which is wherever 

the summation and take the role. Likewise, it tend to aren't certain what state s0 can the agent enter once 

taking action at a state s, therefore it want T (s0 js; a) to represent the chance and take every prospect into 

consideration. Once the agent steps in most of the states and tries most of the actions in every state, it will 

construct an associate instruction map to demonstrate the standard of taking a selected action given a 

selected state [10]. In the end, the agent will choose for the best value of action at every state which might 

presumably to guide. It can update q(s; a) through off-policy or on-policy wherever the update rule is 

going to be per next section. What distinguishes these 2 policy is however it tend to update q(s; a). For the 

off-policy, it tend to use the max q(s0; a0 ) and r(s; a) to update the q(s; a). For the on-policy, it tend to 

use q(s0; a0 ) and r(s; a) to update the q(s; a). Value operate v(s) may be operating to a grade selected 

state by taking all the Q value during this state into consideration. 

vπ(s) = P a ∈ Aπ(a | s) qπ(s, a)            (2) 

 

3 Materials and Methodology 

 

3.1 Experimental setup 

ROG Strix GL553 comes with Windows 10 pre-installed and features a 7th-generation Intel® Core™ 

i7 quad-core processor, NVIDIA® GeForce® GTX 1050 graphics and full Microsoft® DirectX® 12 

(GPU) required for running our model. 

3.3 Training and Autonomous Mode 

Udacity Self-Driving Car Simulator is used in this work. The simulator has the interface which support 

manual driving and autonomous driving. In the training mode, the car is operated manually to record the 

driving behaviour. Then, the recorded image data are used to train the model. Each driving instruction 

contains a steering angle and an acceleration throttle, which changes the car’s direction and the speed (via 

acceleration).Moreover, in the autonomous mode, the model is tested to see how well the model learned 

to drive the car without dropping off the road. Each driving instruction contains a steering angle and an 

acceleration throttle, which changes the car’s direction and the speed (via acceleration). As this happens, 

our model generate the new image data frames at real time.   

                                                                                                                      

3.4 Deep Reinforcement Learning with Double DQN-Learning 

In this work, neural network based reinforcement learning is applied with Double DQN algorithm for 

autonomous path planning. The practicality of a neural network is to map the state s to q(s; ). The target is 

generated by another neural network known as a target network ruled by zero that contains a similar 

design. Currently, it has a tendency to get two neural networks with an identical structure ruled by 

parameters and zero separately. However, zero is at first traced from throughout coaching in one episode 

(agent begin from the beginning to the end), it are going to copy to zero for each N steps. In alternative 

words, it don’t update zero at intervals these N steps. The equation of target is:  
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a 

Yt ≡ rt+1 + γq(St+1, argmax aq(St+1, a; θt), θ0 t)           (3) 

The 1st input St+1 into the network and opt for the action a corresponds to the output vector denoted by 

argmax(St+1; a; t). At the same time, it input St+1 into the zero network and acquire another output 

vector. It have a tendency to figure the target Yt by combining the present reward rt+1 and therefore the 

alphabetic character worth from the zero net-work q(St+1; a; t0 )[11,12]. The algorithm for training is 

shown below. 

Algorithm : Double DQN Algorithm  

Input: D -empty replay buffer; θ-initial network parameter; θ
t 

-copy of θ Nr-replay buffer 

max size; Nb-training batch size; N-target network update frequency 

{ 

for ( episode e∈ { 1, 2,...,M} ){ 

   initialize frame sequence x ← (); 

   for ( t∈ { 0, 1,...} ) { 

 Set state s ← x, sample action a ∼ πB ; 

 Sample next frame xt from environment s given (s,a) and receive reward r, and append xt to 

x; 

 if |x| > Nf then delete oldest frame xtmin from x end; 

 Set s
t 
← x, and add transition tuples (s, a, r, s

t 
) to D, replacing the oldest tuple 

if |D| ≥ Nr ; 

 Construct target values, one for each of the Nb tuples: Define 

              amax(st;θ) = argmax t q(st,at;θ) 

         yj  = 
,
r if st  is terminal 

 

 Do gradient descent step with loss "yj  − q(s, a; θ)"2 ; 

 Replace target parameters θ
t 

← θ every N 

 

} 

 

4 Architecture for agent learning 

 

4.1 Observation (Ot)  

Observation made by the agent is taken as angles of joints in which the agent takes the decision and 

process to the real world entity i.e. environment. Here the path gets observed by the camera sensor and 

decides the path to travel.  

 

4.2 Reward (Rt) 

Consider the previous situation of having a decision to go either left or right and have a rough idea 

about the two paths, abstractly know about the path in each way and the estimated time it would take if 

you chose that path. Each reward value decides whether it is a Positive or Negative reward value. 
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4.3 Action (At) 

Actions are taken based on the reward values in which decision are made according to the angels 

produced by agent during action time. 

 

Figure 2. Agent Learning Model 

5 Experiments and Results 

The performance of the proposed model is measured by driving the car in normal and hill path. Initially, 

the model developed using RL is implemented using simulator used to drive the car manually for the 

normal path. While driving the car the model generated the training data from the environment. Four 

operations such as drive forward, left, right and brake or reverse are applied to control the car to drive in 

the right path. The data produced from three camera sensor is lively processed and taken as a input for RL 

learning techniques and behaves according to the environment inputs The live feeds obtained during the 

training phase are shown in the Fig.5. The driving action performed and its angles are depicted in 

Table.1.Table.2 compares the training time and memory speed obtained by the model running in CPU and 

GPU.  Similarly, the model is trained for hill path and the training data are recorded.   Subsequently, the 

model is tested for autonomous mode in both normal and hill path.Fig.3 and Fig.4 shows the autonomous 

mode of car driving in normal and hill path. The model achieved driving accuracy of 92% for normal path 

and 86% in hill path as shown in Fig.6.  

 

   

Figure 3. Simulation for normal path 
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Figure 4. Simulation for hill path 

 

 

Figure 5. Live data feeds 

Table 1 Angels and Actions takes in path 

Angel Action 

-0.028 to -3.67(approx.) Left 
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6.23 to 10.09(approx.) Right 

0.43 to 2.29(approx.) Forward 

 

Table 2 Comparison of training time taken for CPU and GPU 

Parameters CPU GPU 

Training Time 8 Hours 4.5 Hours 

Memory Speed 
750 Mbps 

(Depends on Architecture) 

4 Gbps 

(Depends on Architecture) 

 

 

 

Figure 6 Accuracy comparison for normal and hill path 

6 Conclusion 

In this paper, a reinforcement learning algorithm is introduced to identify the path for autonomous 

robot in dynamic environment. The path generated by the reinforcement algorithm is executed by the 

robots and produces more accurate results. The results are simulated using Udacity simulator and the 

performance of the model is evaluated in normal and hill path. The experimental results show that the 

model provides a better accuracy of 92% for normal path and providing an accuracy of 86% for hill path. 

Simulation results show that the reinforcement learning based model for autonomous robot provide better 

accuracy for normal path even for the dynamic environment than the hill path. Using reinforcement 

learning method path can be identified without need of prior knowledge about the environment.   
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