
International Journal of Future Generation Communication and Networking

 Vol. 13, No. 2, 2020 pp.1191-1205

1191

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Abstract

 In recent technology of Arithmetic application will have number of approximate multipliers,

approximate adders, this work will reduced the complexity in those approximate multiplier and adder

by way of uniqueness approach to compact area, delay and power. In the Scalable method of

approximate signed and unsigned multiplier in truncated rounding technique will present to reduced

number of logic gates in partial products with help of leading one bit architecture. In the approximate

signed and unsigned multiplication design be perform with using arithmetic operation, truncation

operation, absolute operation for shift with add accumulation. In this process of TOSAM will have

number of modes it will differentiate based upon height (h) and truncated (t) such as (h,t) it will

described in the architecture TOSAM(0,2), TOSAM(0,3), TOSAM(1,5), TOSAM(2,6), TOSAM(3,7),

TOSAM(4,8), TOSAM(5,9). Here this TOSAM Operation include more absolute error in the LSB data

shift Unit, thus proposed line of attack will customized in all the arithmetic operations of shift and add

unit with using XOR-MUX Full adder to find a improved solution and reduced the absolute error and it

will proved higher improvements of area and energy utilizations. In this proposed novelty work will

modified approximate signed multiplier architecture as per absolute error reduction in TOSAM (3,7),

TOSAM (4,8), TOSAM (5,9) and consequently prove the compared terms of area, delay and power. To

conclude this work will designed in Verilog HDL and simulated in Modelsim, Synthesized in Xilinx

14.2.

Keywords :—TOSAM (Truncation Rounding based Scalable approximate Multiplier), HDL(

Hardware Description Language), FPGA (Field Programmable Gate Array).

I. INTRODUCTION

 In a recent technology of digital signal processing application, a multiplier is a priority one with low

area and low power utilizations. Now a day's a approximate multiplier will functioning good manner to

reduced area, delay and power, but it will have more error rate and more energy utilizations. These

approximate computing based multiplier will not computing proper results in error-resilient

applications example in such as audio processing and video processing, with signal processing

applications. More in particular in gadgets based signal processing applications will take more energy

utilization with high latency in arithmetic operations. To overcome this problem of high latency and

energy utilization with error-resilient here work will introduced a scalable approximate multiplier with

using truncated rounding based technique which present, to minimized a number of partial products

which based on leading one bit position. In this multiplier functionality will have three steps, a first

steps to generate a partial products based upon input operands, a second sets to accumulated the partial

products until two rows remain, a third steps to remained two rows are added and get the final outputs.

In the existing method of approximate signed multiplier will have a six number of blocks is such as 1)

G. Erna#1 and S. Tamilselvan*2

1Research Scholar, Department of ECE, Pondicherry Engineering College, Puducherry, India,

ernamist@gmail.com
2Associate Professor, Department of ECE, Pondicherry Engineering College, Puducherry,

India, tamilselvan@pec.edu

A Novel FPGA Implementation Of Error Reduction In 8,16 And 32-Bit Scalable

Approximate Rounding Based TOSAM (3,7) And (4,8) Multiplier

1192

Approximate Absolute Unit, 2) Leading One Detector Unit, 3) Truncation Unit, 4) Arithmetic Unit, 5)

Shift Unit and 6) Sign and Zero Detector Unit. Here, Arithmetic Unit will functioning with two

conventional full adder, one n x n bit multiplier and Shift Unit. Fig.1 will exposed the Architecture of

Existing Approximate Signed and Unsigned Multiplier [1].

APPROXIMATE
ABSOLUTE

UNIT

A

B

n

n

LEADING ONE
DETECTOR UNIT

|A|app

n-1

n-1

TRUNCATION
UNIT

KA

n-1

KB

n-1

|B|app

(YA)T

t

t

(YB)T

ARITHMETIC UNIT

(YA)T (YB)T

1+(YA)T + (YB)T + (YA)APX x (YB)APX SHIFT
UNIT

SIGN AND ZERO
DETECTION2n

(AXB)app

2n
2+max(t, 2h+2)

[log2n]

[log2n]

KAKB

Zero Sign

Figure 1 : Block diagram of the Existing approximate signed Multiplier

 A Conventional adder is one of the most fundamental and most important arithmetic operations

which adds the two binary (1,0) digits. For one bit operation of (a, b) addition it will take one half adder

and (a, b, c) addition it will take two half adder instead of one full adder. Here, one half adder will take

two logic gates therefore one full adder will take five logic gates with carry operations, thus

conventional full adders will performing more logic size. Here, the proposed work will introduced a

level synchronous XOR MUX full adder design regarding to reduce a number of logic gates with high

speed and minimum area. Here a Approximate Rounding based method of Multiplier will not used in

fixed size it's a variable size its depends upon TOSAM mode operations example for TOSAM (3,7) will

have to used 4x4 bit multiplier, TOSAM (4,8) will have to used 5x5 bit multiplier, TOSAM (5,9) will

have to used 6x6 bit multiplier, therefore this multiplier will take number of partial products and

number of conventional full adders with more logic size, therefore this proposed work will replace the

full adder instead of XOR-MUX full adder to reduced the logic size in Multiplier design with good

performance of area reduction. Next Shift Unit will functioning shifted with number of binary zeros in

LSB (Lest Significant bit), for this zero shifting operation a digit value will have loss SNR (Signal to

Noise Ratio) level, thus proposed work will introduced one's shifting operations, for example

"0100_1111" is 79, "0100_0000" is 64, here difference is "15" thus it will concern the absolute error

diversity in approximate rounding based multiplier [10].

In this paper, we elaborated an approximate procedure for decreasing the number of logic size of all the

arithmetic operations and reduced the absolute error in TOSAM (3,7) and TOSAM (4,8). A Leading

one bit possible also be changes depends upon the bit size and it help to find a position to truncated bits,

here height will mention 'h' and truncated will bring up in 't', example TOSAM (h,t). For this proposed

operations to reduced the error resulting from the rounding based technique it will find approximate

amount of truncated values by rounding then to improve higher accuracy and performance compared to

those of the state of the art approximate multipliers of Wallace Tree Multiplier, DRUM, LETAM,

U-ROBA, DSM, DQ4:2C4 [11].

In this paper, our aim to provide the consequences in less area and less power utilization using

XOR-MUX full adder in Approximate Rounding Based TOSAM Multiplier with proved the

effectiveness in terms of area, power and delay comparison. Section II present particulars of

XOR-MUX Full adder design with Conventional Full Adder. Section III presents details of Operations

of Scalable Approximate Rounding based TOSAM Multiplier. Section IV presents proposed design of

Rounding Based TOSAM Multiplier. Section V presents a FPGA Implementation of Proposed

TOSAM architecture with result, implementation and comparisons. Section VI drawn a conclusion of

this paper with future enhancements.

International Journal of Future Generation Communication and Networking

 Vol. 13, No. 2, 2020 pp.1191-1205

1193

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

II. OPERATION OF XOR MUX & CONVENTIONAL FULL ADDER

 In a arithmetic addition procedure of full adders will enclose a more critical paths and data paths on

digital signal processing applications, thus its core representation will used for many arithmetic

operations such as address computation, division, multiplication, cache with memory access in floating

point unit (FPU) and arithmetic logic units (ALU). Here, this paper introduced a two consecutive stage

of XOR and Multiplexer based single bit full adder design with less area and power optimization.

While this XOR and Multiplexer based Full adder design will compare to conventional Full adder

design with area, delay and power [2].

A
B

Cin

SUM

COUT
0

1

Figure 2 : Proposed XOR-MUX Full Adder

Fig.2 shows the proposed architecture of XOR with MUX Full adder design while employ two

consecutive stages of XOR gate for Sum operation and 2:1 non-inverting multiplexer at the same time

as using for Carry operations, it will take totally 2 logic gates and 1 multiplexer. The truth table of

XOR-MUX Full adder design will shown in Table.1.

Table 1 : Truth Table of XOR-MUX & Conventional Full Adder

CIN A B SUM COUT

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Half Adder Half Adder

A

B

C

SUM

CARRY

Figure 3 : Conventional Full Adder

A Gate level structure of Conventional Full adder design will shown in Fig.3. In this Fig shown 2

XOR Gate, 2 AND Gate and 1 OR Gate based structure, it will take totally 5 logic gate based structure,

compared to XOR MUX Full adder design this Conventional Full Adder will take additionally 3 logic

gates [12]. Table.2 and Fig.4 will shown the comparisons and analysis for Single Bit XOR MUX and

1194

Conventional Full Adder Design.

Table 2 : Comparisons of XOR MUX and Conventional Full adder Design

 XOR

MUX

 Full

Adder

Convention

al

Full Adder

Slice

Registers

0 0

LUT 1 2

Occupied

Slice

1 1

IOB 5 5

Delay(ns) 6.110 8.025

Power(mW) 14 14

Figure 4 : Comparison and analysis chart for Single Bit XOR MUX and Conventional Full

Adder Design

III. OPERATION OF SCALABLE APPROXIMATE ROUNDING BASED TOSAM MULTIPLIER

Approximate Rounding Based Multiplier will need to almost ordinary error distribution with zero mean

value, then only its consume less energy compared to that of exact approximate multiplier of Wallace

Tree, DRUM, LETAM, U-ROBA, DSM, DQ4:2C4. This proposed work of approximation signed

multiplier will have some key contributions as follow 1) A leading one bit position of scalable

approximate multiplier will find a positions of highest digit logic one and it will be rounded and

truncated to improve the accuracy of approximate multiplier operations. The Schematic diagram of

Leading One Detector Unit for 8-Bit input operands is depict in Fig.6, this circuit diagram will

performance only with AND, NOR gate operations, In[3:0] will functioning as LSB Operations and

In[7:4] will functioning with MSB Operations. 2) Examination of this Rounding based Multiplier will

have two thing is priority such as t (truncation) and h (height) it's supportive to tradeoff accuracy,

energy utilization with delay. This TOSAM Operation of result by multiplying A and B might be

Calculated as in equation (1)

A x B = 2kA+kB x XA x XB (1)

Where, XA and XB will be calculated from Approximation Rounding of Truncation Unit it's also called

YA and YB, and this leading one bit output will called KA and KB it will denotes the positions with log2n.

For examples, assume that |A| app = (00011001)2, in this case KA = (00010000)2 and kA = (0100)2 = 4.

These signals of (YA)t and (YB)t are exert to arithmetic unit to calculate the expression of equation (2)

International Journal of Future Generation Communication and Networking

 Vol. 13, No. 2, 2020 pp.1191-1205

1195

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

= 1 + (YA)t + (YB)t + (YA)APX x (YB)APX (2)

As an example, the steps of multiplying A by B for the case of t=7 and h=3 are depicted in Fig.5, where

TOSAM(3,7). As per the architecture of Fig.1 Existing Approximate signed Multiplier Block diagram

with Numeric Example will present, here the initial case of A and B inputs will take 16 Bit Binary

values A = 11761 = (00101101), B = 2482, the approximate results [(A x B)APX] is equal to 28 901 376

while the exact results [(A x B)EXACT] is equal to 29 190 802. In this case the absolute error is 298 426.

which is about 0.99% of the exact output (the error is less than 1% in this case).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 11761 Ka 13

0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 2482 Kb 11

29190802 kakb 24

0 1 1 1 YA-APX 7 a3 a2 a1 a0

0 0 1 1 YB-APX 3 b3 b2 b1 b0

0 0 0 0 1 1 1 a3b3 a3b2 a3b1 a3b0 a2b0 a1b0 a0b0

0 0 1 1 1 a2b3 a2b2 a2b1 a1b1 a0b1

0 0 0 a1b3 a1b2 a0b2

0 a0b3

0 0 0 1 1 0 1 c5 c4 c3 c2 c1 s1 a0b0

0 0 0 1 0 a3b3 s5 s4 s3 s2

0 a0b3

0 0 1 0 1 0 1 n5 n4 n3 n2 n1 m1 s1 a0b0

0 0 0 0 z4 m5 m4 m3 m2

0 0 0 1 0 1 0 1 21 z3 z2 z1

0 1 1 0 1 1 1 0 Yat

0 0 1 1 0 1 1 0 Ybt

0 1 1 0 1 1 1 0 0 1

0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28901376

0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 29190802

289426ERROR

Half Adder Full Adder

Truncated 7-Bit Adder

TOSAM (3,7) - 16 BIT LEVEL 1

LEVEL 2

LEVEL 3

Figure 5 : Numeric Example of Existing 16-Bit TOSAM(3,7) Multiplier

K[0]K[1]K[2]K[3]K[4]K[5]K[6]K[7]

In[0]In[1]In[2]In[3]In[4]In[5]In[6]In[7]

Figure 6: Schematic of the Leading One Detector Unit for 8-bit input operands.

In the Proposed Method of Approximate Signed Multiplier Block diagram with Numeric example of

16-Bit TOSAM(3,7) Multiplier will present in Fig.7, here the initial case of A and B input will take 16

Bit Binary value A = 11761 = (00101101), B = 2482, the proposed operation will be modified in the

shift unit operations in such the output value shifted with '1' logic, as per that approximate results [(A x

B)APX] is equal to 28 966 911 while the exact results (A x B)EXACT] is equal to 29 190 802. In this case

the absolute error is 223 891 which is about 0.76% of the exact output (the error is less than 0.99% in

this case). These Error analysis of percentage calculation of TOSAM Multiplier to calculate the term of

equation (3)

Error analysis (%) = [[(A x B)APX] - [(A x B)EXACT]] x 100 / [(A x B)EXACT] (3)

1196

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 11761 Ka 13

0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 2482 Kb 11

29190802 kakb 24

0 1 1 1 YA-APX 7 a3 a2 a1 a0

0 0 1 1 YB-APX 3 b3 b2 b1 b0

0 0 0 0 1 1 1 a3b3 a3b2 a3b1 a3b0 a2b0 a1b0 a0b0

0 0 1 1 1 a2b3 a2b2 a2b1 a1b1 a0b1

0 0 0 a1b3 a1b2 a0b2

0 a0b3

0 0 0 1 1 0 1 c5 c4 c3 c2 c1 s1 a0b0

0 0 0 1 0 a3b3 s5 s4 s3 s2

0 a0b3

0 0 1 0 1 0 1 n5 n4 n3 n2 n1 m1 s1 a0b0

0 0 0 0 z4 m5 m4 m3 m2

0 0 0 1 0 1 0 1 21 z3 z2 z1

0 1 1 0 1 1 1 0 Yat

0 0 1 1 0 1 1 0 Ybt

0 1 1 0 1 1 1 0 0 1

0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 28966911

0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 29190802

223891

Half Adder Full Adder

Error

TOSAM (3,7) - 16 BIT LEVEL 1

LEVEL 2

LEVEL 3

Truncated 7-Bit Adder

Figure 7 : Numeric Example of Proposed 16-Bit TOSAM(3,7) Multiplier

As per this Numeric Example will be differ in Error Analysis while configure different bit size, the

Numeric Example of 8-Bit, 16-Bit and 32-Bit of Existing and Proposed TOSAM(3,7) and

TOSAM(4,8) Multiplier will shown in Fig.8 to Fig.17, it will shown Different level and different

Multiplier size with Error Analysis (%). Error Analysis results of 8-Bit, 16-Bit, 32-Bit TOSAM (3,7)

and TOSAM(4,8) will shown in Fig.18 and Fig.19.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 1 45 ka 5

0 0 0 0 1 0 0 1 9 kb 3

405 kakb 8

0 1 1 1 YA-APX 7 a3 a2 a1 a0

0 0 1 1 YB-APX 3 b3 b2 b1 b0

0 0 0 0 1 1 1 a3b3 a3b2 a3b1 a3b0 a2b0 a1b0 a0b0

0 0 1 1 1 a2b3 a2b2 a2b1 a1b1 a0b1

0 0 0 a1b3 a1b2 a0b2

0 a0b3

0 0 0 1 1 0 1 c5 c4 c3 c2 c1 s1 a0b0

0 0 0 1 0 a3b3 s5 s4 s3 s2

0 a0b3

0 0 1 0 1 0 1 n5 n4 n3 n2 n1 m1 s1 a0b0

0 0 0 0 z4 m5 m4 m3 m2

0 0 0 1 0 1 0 1 21 z3 z2 z1

0 1 1 0 1 0 0 0 Yat

0 0 1 0 0 0 0 0 Ybt

0 1 1 0 0 1 1 1 0 1

0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 413

0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 405

8

Truncated 7_Bit_Adder

ERROR

Half Adder Full Adder

LEVEL 1

LEVEL 2

LEVEL 3

TOSAM (3,7) - 8 BIT

Figure 8: Numeric Example of Existing 8-Bit TOSAM(3,7) Multiplier

International Journal of Future Generation Communication and Networking

 Vol. 13, No. 2, 2020 pp.1191-1205

1197

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 1 45 ka 5

0 0 0 0 1 0 0 1 9 kb 3

405 kakb 8

0 1 1 1 YA-APX 7 a3 a2 a1 a0

0 0 1 1 YB-APX 3 b3 b2 b1 b0

0 0 0 0 1 1 1 a3b3 a3b2 a3b1 a3b0 a2b0 a1b0 a0b0

0 0 1 1 1 a2b3 a2b2 a2b1 a1b1 a0b1

0 0 0 a1b3 a1b2 a0b2

0 a0b3

0 0 0 1 1 0 1 c5 c4 c3 c2 c1 s1 a0b0

0 0 0 1 0 a3b3 s5 s4 s3 s2

0 a0b3

0 0 1 0 1 0 1 n5 n4 n3 n2 n1 m1 s1 a0b0

0 0 0 0 z4 m5 m4 m3 m2

0 0 0 1 0 1 0 1 21 z3 z2 z1

0 1 1 0 1 0 0 0 Yat

0 0 1 0 0 0 0 0 Ybt

0 1 1 0 0 1 1 1 0 1

0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 413

0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 405

8Error

Truncated-7bit adder

Half Adder Full Adder

TOSAM (3,7) - 8 BIT

LEVEL 1

LEVEL 2

LEVEL 3

Figure 9: Numeric Example of Proposed 8-Bit TOSAM(3,7) Multiplier

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 75563008 Ka 26

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1795686 Kb 20

46

0 0 1 1 YA-APX 3 a3 a2 a1 a0

1 0 1 1 YB-APX 11 b3 b2 b1 b0

0 0 0 0 0 1 1 a3b3 a3b2 a3b1 a3b0 a2b0 a1b0 a0b0

0 0 0 1 1 a2b3 a2b2 a2b1 a1b1 a0b1

1 0 0 a1b3 a1b2 a0b2

1 a0b3

0 0 0 0 1 0 1 c5 c4 c3 c2 c1 s1 a0b0

0 0 1 0 1 a3b3 s5 s4 s3 s2

1 a0b3

0 0 0 0 1 0 0 1 n5 n4 n3 n2 n1 m1 s1 a0b0

0 0 1 1 z4 m5 m4 m3 m2

0 0 1 0 0 0 0 1 33 z3 z2 z1

0 0 1 0 0 0 0 0 Yat

1 0 1 1 0 1 1 0 Ybt

0 1 1 1 1 1 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 0 138263587192832

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 135687435583488

2576151609344

Half Adder Full Adder

LEVEL 1

TOSAM (3,7) - 32 BIT

ERROR

LEVEL 2

LEVEL 3

Truncated 7-Bit Adder

Figure 10: Numeric Example of Existing 32-Bit TOSAM(3,7) Multiplier

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 75563008 Ka 26

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1795686 Kb 20

46

0 0 1 1 YA-APX 3 a3 a2 a1 a0

1 0 1 1 YB-APX 11 b3 b2 b1 b0

0 0 0 0 0 1 1 a3b3 a3b2 a3b1 a3b0 a2b0 a1b0 a0b0

0 0 0 1 1 a2b3 a2b2 a2b1 a1b1 a0b1

1 0 0 a1b3 a1b2 a0b2

1 a0b3

0 0 0 0 1 0 1 c5 c4 c3 c2 c1 s1 a0b0

0 0 1 0 1 a3b3 s5 s4 s3 s2

1 a0b3

0 0 0 0 1 0 0 1 n5 n4 n3 n2 n1 m1 s1 a0b0

0 0 1 1 z4 m5 m4 m3 m2

0 0 1 0 0 0 0 1 33 z3 z2 z1

0 0 1 0 0 0 0 0 Yat

1 0 1 1 0 1 1 0 Ybt

0 1 1 1 1 1 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 138538465099775

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 135687435583488

2851029516287

TOSAM (3,7) - 32 BIT

LEVEL 1

LEVEL 2

LEVEL 3

Truncated 7-Bit Adder

Half Adder Full Adder

ERROR

Figure 11 : Numeric Example of Proposed 32-Bit TOSAM(3,7) Multiplier

1198

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 1 45 ka 5

0 0 0 0 1 0 0 1 9 kb 3

405 kakb 8

0 1 1 0 1 YA-APX 13 a4 a3 a2 a1 a0

0 0 1 0 1 YB-APX 5 b4 b3 b2 b1 b0

0 0 0 0 0 1 1 0 1 a4b4 a4b3 a4b2 a4b1 a4b0 a3b0 a2b0 a1b0 a0b0

0 0 1 0 0 0 0 a3b4 a3b3 a3b2 a3b1 a2b1 a1b1 a0b1

0 0 1 0 1 a2b4 a2b3 a2b2 a1b2 a0b2

0 0 0 a1b4 a1b3 a0b3

0 a0b4

0 0 0 0 0 1 0 0 1 c8 c7 c6 c4 c3 c2 c1 s1 a0b0

0 0 0 0 1 1 0 a4b4 s8 s7 c5 s4 s3 s2

1 0 0 s6 s5 a0b3

0 a1b4

0 0 0 0 1 0 0 0 1 y6 y5 y4 y3 y2 y1 x1 s1 a0b0

0 0 0 1 1 0 x7 x6 x5 x4 x3 x2

0 a1b4

0 0 0 1 0 0 0 0 1 n6 n5 n4 n3 n2 n1 m1 x1 s1 a0b0

0 0 0 1 0 z5 m6 m5 m4 m3 m2

0 0 1 0 z4 z3 z2 z1

0 0 1 0 0 0 0 0 1 65

0 1 1 0 1 0 0 0 0 Yat 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 0 0 Ybt

0 1 1 0 1 0 1 0 0 0 1

0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 424

0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 405

19

Truncated-8Bit Adder

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

TOSAM(4,8)-8BIT

ERROR

Half Adder Full Adder

Figure 12 : Numeric Example of Existing 8-Bit TOSAM(4,8) Multiplier

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 1 45 ka 5

0 0 0 0 1 0 0 1 9 kb 3

405 kakb 8

0 1 1 0 1 YA-APX 13 a4 a3 a2 a1 a0

0 0 1 0 1 YB-APX 5 b4 b3 b2 b1 b0

0 0 0 0 0 1 1 0 1 a4b4 a4b3 a4b2 a4b1 a4b0 a3b0 a2b0 a1b0 a0b0

0 0 1 0 0 0 0 a3b4 a3b3 a3b2 a3b1 a2b1 a1b1 a0b1

0 0 1 0 1 a2b4 a2b3 a2b2 a1b2 a0b2

0 0 0 a1b4 a1b3 a0b3

0 a0b4

0 0 0 0 0 1 0 0 1 c8 c7 c6 c4 c3 c2 c1 s1 a0b0

0 0 0 0 1 1 0 a4b4 s8 s7 c5 s4 s3 s2

1 0 0 s6 s5 a0b3

0 a1b4

0 0 0 0 1 0 0 0 1 y6 y5 y4 y3 y2 y1 x1 s1 a0b0

0 0 0 1 1 0 x7 x6 x5 x4 x3 x2

0 a1b4

0 0 0 1 0 0 0 0 1 n6 n5 n4 n3 n2 n1 m1 x1 s1 a0b0

0 0 0 1 0 z5 m6 m5 m4 m3 m2

0 0 1 0 z4 z3 z2 z1

0 0 1 0 0 0 0 0 1 65

0 1 1 0 1 0 0 0 0 Yat 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 0 0 Ybt

0 1 1 0 1 0 1 0 0 0 1

0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 424

0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 405

19

Half Adder Full Adder

TOSAM(4,8)-8BIT LEVEL 1

ERROR

LEVEL 2

LEVEL 3

LEVEL 4

Figure 13 : Numeric Example of Proposed 8-Bit TOSAM(4,8) Multiplier

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 11761 Ka 13

0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 2482 Kb 11

29190802 kakb 24

0 1 1 0 1 YA-APX 13 a4 a3 a2 a1 a0

0 0 1 1 1 YB-APX 7 b4 b3 b2 b1 b0

0 0 0 0 0 1 1 0 1 a4b4 a4b3 a4b2 a4b1 a4b0 a3b0 a2b0 a1b0 a0b0

0 0 1 1 1 0 1 a3b4 a3b3 a3b2 a3b1 a2b1 a1b1 a0b1

0 0 1 0 1 a2b4 a2b3 a2b2 a1b2 a0b2

0 0 0 a1b4 a1b3 a0b3

0 a0b4

0 0 0 1 1 1 0 1 1 c8 c7 c6 c4 c3 c2 c1 s1 a0b0

0 0 0 0 0 0 0 a4b4 s8 s7 c5 s4 s3 s2

1 0 0 s6 s5 a0b3

0 a1b4

0 0 1 0 0 0 0 1 1 y6 y5 y4 y3 y2 y1 x1 s1 a0b0

0 0 0 0 1 1 x7 x6 x5 x4 x3 x2

0 a1b4

0 0 0 0 0 1 0 1 1 n6 n5 n4 n3 n2 n1 m1 x1 s1 a0b0

0 0 1 0 1 z5 m6 m5 m4 m3 m2

0 0 1 0 1 1 0 1 1 91 z4 z3 z2 z1

0 1 1 0 1 1 1 1 0 Yat

0 0 1 1 0 1 1 0 0 Ybt

0 1 1 1 0 1 0 0 1 0 1 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30572544

0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 29190802

1381742ERROR

Truncated 8-Bit Adder

LEVEL 2

LEVEL 3

LEVEL 4

Half Adder Full Adder

LEVEL 1TOSAM (4,8) - 16 BIT

Figure 14 : Numeric Example of Existing 16-Bit TOSAM(4,8) Multiplier

International Journal of Future Generation Communication and Networking

 Vol. 13, No. 2, 2020 pp.1191-1205

1199

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 11761 Ka 13

0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 2482 Kb 11

29190802 kakb 24

0 1 1 0 1 YA-APX 13 a4 a3 a2 a1 a0

0 0 1 1 1 YB-APX 7 b4 b3 b2 b1 b0

0 0 0 0 0 1 1 0 1 a4b4 a4b3 a4b2 a4b1 a4b0 a3b0 a2b0 a1b0 a0b0

0 0 1 1 1 0 1 a3b4 a3b3 a3b2 a3b1 a2b1 a1b1 a0b1

0 0 1 0 1 a2b4 a2b3 a2b2 a1b2 a0b2

0 0 0 a1b4 a1b3 a0b3

0 a0b4

0 0 0 1 1 1 0 1 1 c8 c7 c6 c4 c3 c2 c1 s1 a0b0

0 0 0 0 0 0 0 a4b4 s8 s7 c5 s4 s3 s2

1 0 0 s6 s5 a0b3

0 a1b4

0 0 1 0 0 0 0 1 1 y6 y5 y4 y3 y2 y1 x1 s1 a0b0

0 0 0 0 1 1 x7 x6 x5 x4 x3 x2

0 a1b4

0 0 0 0 0 1 0 1 1 n6 n5 n4 n3 n2 n1 m1 x1 s1 a0b0

0 0 1 0 1 z5 m6 m5 m4 m3 m2

0 0 1 0 1 1 0 1 1 91 z4 z3 z2 z1

0 1 1 0 1 1 1 1 0 Yat

0 0 1 1 0 1 1 0 0 Ybt

0 1 1 1 0 1 0 0 1 0 1 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 30605311

0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 29190802

1414509Error

Half Adder Full Adder

TOSAM (4,8) - 16 BIT LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

Truncated 8-Bit Adder

Figure 15 : Numeric Example of Proposed 16-Bit TOSAM(4,8) Multiplier

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 75563008 Ka 26

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1795686 Kb 20

46

0 0 1 0 1 YA-APX 5 a4 a3 a2 a1 a0

1 0 1 1 1 YB-APX 23 b4 b3 b2 b1 b0

0 0 0 0 0 0 1 0 1 a4b4 a4b3 a4b2 a4b1 a4b0 a3b0 a2b0 a1b0 a0b0

0 0 0 0 1 0 1 a3b4 a3b3 a3b2 a3b1 a2b1 a1b1 a0b1

1 0 1 0 1 a2b4 a2b3 a2b2 a1b2 a0b2

0 0 0 a1b4 a1b3 a0b3

1 a0b4

0 0 0 0 0 1 0 1 1 c8 c7 c6 c4 c3 c2 c1 s1 a0b0

0 0 1 0 1 1 0 a4b4 s8 s7 c5 s4 s3 s2

0 1 0 s6 s5 a0b3

0 a1b4

0 0 0 1 1 0 0 1 1 y6 y5 y4 y3 y2 y1 x1 s1 a0b0

0 0 1 0 0 0 x7 x6 x5 x4 x3 x2

0 a1b4

0 0 0 0 0 0 0 1 1 n6 n5 n4 n3 n2 n1 m1 x1 s1 a0b0

0 0 1 1 1 z5 m6 m5 m4 m3 m2

0 0 1 1 1 0 0 1 1 115 z4 z3 z2 z1

0 0 1 0 0 0 0 0 0 Yat

1 0 1 1 0 1 1 0 0 Ybt 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 74629351735296

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 135687435583488

61058083848192ERROR

TOSAM (4,8) - 32 BIT

Half Adder Full Adder

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

Truncated 8-Bit Adder

Figure 16: Numeric Example of Existing 32-Bit TOSAM(4,8) Multiplier

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 75563008 Ka 26

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1795686 Kb 20

46

0 0 1 0 1 YA-APX 5 a4 a3 a2 a1 a0

1 0 1 1 1 YB-APX 23 b4 b3 b2 b1 b0

0 0 0 0 0 0 1 0 1 a4b4 a4b3 a4b2 a4b1 a4b0 a3b0 a2b0 a1b0 a0b0

0 0 0 0 1 0 1 a3b4 a3b3 a3b2 a3b1 a2b1 a1b1 a0b1

1 0 1 0 1 a2b4 a2b3 a2b2 a1b2 a0b2

0 0 0 a1b4 a1b3 a0b3

1 a0b4

0 0 0 0 0 1 0 1 1 c8 c7 c6 c4 c3 c2 c1 s1 a0b0

0 0 1 0 1 1 0 a4b4 s8 s7 c5 s4 s3 s2

0 1 0 s6 s5 a0b3

0 a1b4

0 0 0 1 1 0 0 1 1 y6 y5 y4 y3 y2 y1 x1 s1 a0b0

0 0 1 0 0 0 x7 x6 x5 x4 x3 x2

0 a1b4

0 0 0 0 0 0 0 1 1 n6 n5 n4 n3 n2 n1 m1 x1 s1 a0b0

0 0 1 1 1 z5 m6 m5 m4 m3 m2

0 0 1 1 1 0 0 1 1 115 z4 z3 z2 z1

0 0 1 0 0 0 0 0 0 Yat

1 0 1 1 0 1 1 0 0 Ybt 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 74766790688767

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 135687435583488

60920644894721

TOSAM (4,8) - 32 BIT LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

Half Adder Full Adder

ERROR
Figure 17 : Numeric Example of Proposed 32-Bit TOSAM(4,8) Multiplier

1200

Figure 18 : Error Analysis of TOSAM(3,7) Multiplier

Figure 19 : Error Analysis of TOSAM(4,8) Multiplier

IV. PROPOSED DESGIN OF ROUNDING BASED TOSAM MULTIPLIER

The Block diagram of the proposed approximate singed multiplier is depicted in Fig.20. First, the input

of approximate absolute value of the input operands (|A|app, |B|app) is determined using the Approximate

Absolute Unit Block its similar to the one's complement method [3], here the input sign bit will be

detected to check its positive value or negative value, if the input is negative the output value will be

one's complemented, if the input is positive the output value will be not changed. After the

Approximate absolute unit |A|app, |B|app value will given to Leading One Detector Unit [4], and the

position of leading one bit are found using (4).

 (4)

where I can be either |A|app or |B|app. Only one bit of the signal K is "1" revealing the position of the

input leading one bit and assume that the input and output of this unit are I and Yt. In this case, the ith bit

of the output can be generated using (5).

 (5)

International Journal of Future Generation Communication and Networking

 Vol. 13, No. 2, 2020 pp.1191-1205

1201

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

APPROXIMATE
ABSOLUTE

UNIT

A

B

n

n

LEADING ONE
DETECTOR UNIT

|A|app

n-1

n-1

TRUNCATION
UNIT

KA

n-1

KB

n-1

|B|app

TRUNCATION
APPROXIMATION

(YA)T

t

t

(YB)T

4X4
MULTIPLIER

(YA)APX (YB)APX

XOR MUX FULL
ADDER

(YA)T (YB)T

(YA)APX X (YB)APX

CONCATENATE MSB WITH 01

(YA)T + (YB)T + (YA)APX x (YB)APX
SHIFT
UNIT

APPROXIMATE
LSB ABSOLUTE

UNIT

SIGN AND ZERO
DETECTION2n

(AXB)app

2n 2n

Zero Sign

Figure 20 : Block diagram of the Proposed Approximate Signed Multiplier

These Leading one detector unit will generate a output KA, KB with log2
n. For example, assume that

|A|app = (0010_1101_1111_0001)2, in this case KA = (0010_0000_0000_0000)2 and KA log2
n = (1101)2 =

13. Therefore those values will given to Approximate LSB Absolute unit, Shift Unit and Truncation

Unit. Once received the value of KA, KB into the Truncation Unit, it will generate the value of (YA)T and

(YB)T and its given the value to Truncation Approximation block it will work depends upon Mode

operation of TOSAM(h,t) here ' h ' is height and ' t ' is truncation. For example, assume that KA log2
n =

(1101)2 =13, (YA)T = (0_1101_11)2, and (YA)APX = (0110_1111)2, where t = 7. After generation of

(YA)APX and (YB)APX the value will given to the Multiplier with XOR MUX Full Adder design, and also

given to Concatenate MSB with "01" block regarding to calculate the term (6)

1+ (YA)t + (YB)t + (YA)APX x (YB)APX (6)

Here, the Multiplier size of operation will be modified depends upon mode of operations eg:

TOSAM(3,7) will need 4x4 Multiplier, TOSAM(4,8) will need 5x5 Multiplier and TOSAM(5,9) will

need 6x6 Multiplier, here this proposed will design this Multiplier using XOR-MUX Full adder to

reduced the number of logic gates in Multiplier design also. Once concatenate with "01" the data will

given to Shift Unit. In this block of proposed Shift Unit will shifted the bit with operation of KB log2
n

and KA log2
n values, these log value will be added and get the value of KAB log2

n value, then the value

will be shifted as per the log. For example KA = 13, KB = 11, KAB = 24, so the value will be shifted and

started with 24th bit, Shift Unit output (0000_0001_1011_1001_0000_0000_0000

_0000)2. Then the Approximate LSB Absolute Unit will receive the data from Shift Unit, this block

will KAB value and it will replace the LSB from '0' logic to '1' logic to increases the accuracy in output

bits, then the data will given into Sign and Zero Detection Unit to switch the One's complement

operations its depends upon zero and sign operations. Finally the (AxB)App data will presented in the

Output on 2n Size.

V. FPGA IMPLEMENTATION OF PROPOSED TOSAM ARCHITECTURE WITH

RESULTS, IMPLEMENTATION AND COMPARISONS

In this section, will analysis a existing and proposed design of FPGA implementation of TOSAM

architecture with all the modules such as,

* TOSAM (3,7) - Existing System (8-Bit, 16-Bit, 32-Bit)

* TOSAM (3,7) - Proposed System (8-Bit, 16-Bit, 32-Bit)

* TOSAM (4,8) - Exiting System (8-Bit, 16-Bit, 32-Bit)

* TOSAM (4,8) - Proposed System (8-Bit, 16-Bit, 32-Bit)

These all the method will be developed in Verilog HDL and simulated in Modelsim and Synthesized in

Xilinx FPGA S6LX75-2CSG484 and the design parameter of the proposed configuration are compared

with some state-of the art approximate multipliers. In this paper, we have well thought-out the prior

1202

mechanism that have proved best presentation with LETAM [5], DRUM [6], DSM [7], RoBA [8] and

DQ4:2C4 [9] architectures. We have implement both signed and unsigned 8-bit, 16-bit and 32-bit

multiplier to show how the delay, power and area are improved by increasing the width of the multiplier

operands. Fig.21 and Fig.22 will shown the Existing and proposed architecture of TOSAM(3,7)

Multiplier with comparison analysis of Slice register, LUT, Occupied Slice, Delay, Power and Error

Analysis of Existing and Proposed will shown in Table 4 and Table 5, and analysis chart will shown in

Fig.23 and Fig.24. Simulation result analysis of existing and proposed TOSAM (3,7) and TOSAM(4,8)

will shown in Fig.25, Fig.26, Fig.27 and Fig.28.

Figure 21 : Existing System RTL Schematic of TOSAM (3,7) Multiplier

Figure 22 : Proposed System RTL Schematic of TOSAM Multiplier

Table 3: Comparisons Parameter Table for TOSAM (3,7) Approximate Multipliers with 8-Bit,

16-Bit and 32-Bit

 TOSAM (3,7) -

Existing

TOSAM(3,7) -

Proposed

 8-Bit 16-Bit 32-Bit 8-Bit 16-Bit 32-Bit

Slice

Register

15 17 19 6 8 10

LUT 195 359 765 187 257 713

Occupied

Slice

73 150 383 71 90 332

IOB 34 66 130 34 66 130

Delay

(ns)

2.301 2.101 2.121 1.724 1.871 2.088

Power

(W)

3.325 3.324 3.343 0.182 0.236 3.360

Error

Analysis

1.97 0.99 1.89 1.97 0.76 2.10

International Journal of Future Generation Communication and Networking

 Vol. 13, No. 2, 2020 pp.1191-1205

1203

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

(%)

Figure 23 : Comparison analysis results of TOSAM (3,7) Approximate Multipliers with 8-Bit,

16-Bit and 32-Bit

Table 4: Comparisons Parameter Table for TOSAM (4,8) Approximate Multipliers with 8-Bit,

16-Bit and 32-Bit

 TOSAM (4,8) -

Existing

TOSAM(4,8) -

Proposed

 8-Bit 16-Bit 32-Bit 8-Bit 16-Bit 32-Bit

Slice

Register

16 18 19 6 8 10

LUT 228 397 784 178 367 931

Occupied

Slice

97 158 350 83 169 423

IOB 34 66 130 34 66 130

Delay

(ns)

2.299 2.277 2.118 2.221 2.108 2.113

Power

(W)

3.325 3.339 3.560 3.410 3.471 3.366

Error

Analysis

(%)

4.69 4.73 44.99 4.69 4.84 44.89

Figure 24 : Comparison analysis results of TOSAM (4,8) Approximate Multipliers with 8-Bit,

16-Bit and 32-Bit

1204

Figure 25 : Simulation results of Existing TOSAM(3,7) - 16-Bit Approximate Multiplier

Figure 26 : Simulation results of Proposed TOSAM(3,7) - 16-Bit Approximate Multiplier

Figure 27 : Simulation results of Existing TOSAM(4,8) - 16-Bit Approximate Multiplier

Figure 28 : Simulation results of Proposed TOSAM(4,8) - 16-Bit Approximate Multiplier

International Journal of Future Generation Communication and Networking

 Vol. 13, No. 2, 2020 pp.1191-1205

1205

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

VI. CONCLUSION

In this paper, we suggested a novel approach to reduced the number of logic gates and reduced the error

in approximate truncation multiplier in which the mode operation using two parameters, t (truncation)

and h(height). This proposed multiplier was scalable and outperformed other approximate multiplier in

terms of area, delay and power with energy utilizations, here the 32-bit of TOSAM multiplier on

average, improved the energy utilization 99% compared to the exact ROBA, Wallace Tree, LETAM,

DRUM, DSM and DQ4:2C4 multipliers, and also reduced the area and power utilizations. This

proposed approximate Multiplier of TOSAM(3,7), TOSAM(4,8) will proved the efficiency in all the

case's and its suitable to all application domains such as image processing, digital signal processing,

and gadgets and classification based applications.

VII. REFERENCES

[1] "TOSAM: An Energy Efficient Truncation and Rounding Based Scalable Approximate

Multiplier", Shaghayegh Vahdat, Mehdi Kamal, Ali Afzali-Kusha, Massoud Pedram, 2019, IEEE

Transactions on Very Large Scale Integration.

[2] "High Speed Gate Level Synchronous Full Adder Design", Padmanabhan Balasubramanian, Nikos

E, Mastorakis, School of Computer Science, University of Manchester, United Kingdom, WSEAS

TRANSACTIONS on CIRCUITS and SYSTES.

[3] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, and M. Pedram, “RoBa multiplier: A

rounding-based approximate multiplier for high-speed yet energy-efficient digital signal

processing,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 2, pp. 393–401, Feb.

2017.

[4] S. Vahdat, M. Kamal, A. Afzali-Kusha, M. Pedram, and Z. Navabi, “TruncApp: A truncation-based

approximate divider for energy efficient DSP applications,” in Proc. Design, Automat. Test Eur.

Conf. Exhib. (DATE), Lausanne, Switzerland, Mar. 2017, pp. 1635–1638.

[5] S. Vahdat, M. Kamal, A. Afzali-Kusha, and M. Pedram, “LETAM: A low energy truncation-based

approximate multiplier,” Comput. Elect. Eng., vol. 63, pp. 1–17, Oct. 2017.

[6] S. Hashemi, R. I. Bahar, and S. Reda, “DRUM: A dynamic range unbiased multiplier for

approximate applications,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD),

Austin, TX, USA, Nov. 2015, pp. 418–425.

[7] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and N. S. Kim, “Energy-efficient

approximate multiplication for digital signal processing and classification applications,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 6, pp. 1180–1184, Jun. 2015.

[8] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, and M. Pedram, “RoBa multiplier: A

rounding-based approximate multiplier for high-speed yet energy-efficient digital signal

processing,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 2, pp. 393–401, Feb.

2017.

[9] O. Akbari, M. Kamal, A. Afzali-Kusha, and M. Pedram, “Dual-quality 4:2 compressors for

utilizing in dynamic accuracy configurable multipliers,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 25, no. 4, pp. 1352–1361, Apr. 2017.

[10] M. Ha and S. Lee, “Multipliers with approximate 4–2 compressors and error recovery modules,”

IEEE Embedded Syst. Lett., vol. 10, no. 1, pp. 6–9, Mar. 2018.

[11] R. Marimuthu, Y. E. Rezinold, and P. Mallick, “Design and analysis of multiplier using

approximate 15–4 compressor,” IEEE Access, vol. 5, pp. 1027–1036, 2017.

[12] D. Esposito, A. G. M. Strollo, E. Napoli, D. De Caro, and N. Petra, “Approximate multipliers

based on new approximate compressors,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 12,

pp. 4169–4182, Dec. 2018.

	I. INTRODUCTION
	II. Operation of XOR MUX & Conventional Full adder
	III. OPERATION OF Scalable Approximate Rounding Based TOSAM MULTIPLIER
	IV. PROPOSED DESGIN OF ROUNDING BASED TOSAM MULTIPLIER
	V. FPGA IMPLEMENTATION OF PROPOSED TOSAM ARCHITECTURE WITH RESULTS, IMPLEMENTATION AND COMPARISONS
	VI. CONCLUSION
	VII. References

