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Abstract 

Forecasting is an operational research technique used as a basis for management planning and 

decision making. Forecasting provides clues and reduce risk and uncertainties. This technique has 

its own indispensable importance in a wide range of zones including meteorology, energy economics 

and the study stock market etc. The main goal of this work is to predict the occurrence of outliers in 

time series, based on the discovery of motifs by using Particle Swarm Optimization (PSO) algorithm. 

Forecasting the future values of the time series are carried out by the discovered motifs. Such 

forecasted values are compared with its counterparts obtained by different kind of methods like 

Vector Auto Regressive Prediction model, native modal and motif based forecasting using Genetic 

Algorithms. The achieved results prove the potency of the proposed PSO algorithm. 

 

Keywords---Forecasting, Genetic Algorithms, Motif Discovery, Operational Research, Particle 

Swarm Optimization. 

1. Introduction 

   Time series are sequences of real numbers measured at successive, usually regular 

time intervals. Data in the form of time series pervade science, business, and society. 

Examples range from economics to medicine, from biology to physics, and from 

social to computer sciences. Repetitions or recurrences of similar phenomena are a 

fundamental characteristic of non-random natural and artificial systems and, as a 

measurement of the activity of such systems, time series often include pairs of 

segments of strikingly high similarity. These segment pairs are commonly called 

motifs [1], and their existence is unlikely to be due to chance alone. In fact, they 

usually carry important information about the underlying system. Thus, motif 

discovery is fundamental for understanding, characterizing, modeling, and 

predicting the system behind the time series [2]. 

 Motif discovery is a core part of several higher-level algorithms dealing with 

time series, [2], [3]. Identifying similar segment pairs or motifs implies examining 

all pairwise comparisons between all possible segments in a time series. This, 

especially when dealing with long time series streams, results in prohibitive time 

and space complexities. It is for this reason that the majority of motif discovery 

algorithms resort to some kind of data discretization or approximation that allows 

them to hash and retrieve segments efficiently. Following the works by Lin et al. 

[1] and Chiu et al. [4], many of such approaches employ the SAX representation [5] 

and/or a sparse collision matrix [6]. These allow them to achieve a theoretically low 
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computational complexity, but sometimes at the expense of very high constant 

factors.  

A few recent approaches overcome some of these limitations. For instance, [7] 

propose an amplitude multi-resolution approach to detect frequent segments, [8] use 

a grammar inference algorithm for exploring motifs with lengths above a certain 

threshold, [9] use concepts from immune memory to deal with different lengths, and 

[10] combine suffix trees with segment models to find motifs of any length. 

Nevertheless, in general, these approaches still suffer from other data-dependent 

parameters whose correct tuning can require considerable time. Finally, to the best 

of our knowledge, only [12]–[14] consider the identification of motif pairs 

containing segments of different lengths. This can be considered a relevant feature, 

as it produces better results in a number of different domains [13]. In contrast to 

approximate approaches, algorithms that do not discretize the data have been 

comparatively much less popular, with low efficiency generally. Exceptions to this 

statement achieved efficiency by sampling the data stream [15] or by identifying 

extreme points that constrained the search [16].  

In fact, until the work in [17], the exact identification of time series motifs was 

thought to be intractable for even time series of moderate length. In said work, a 

clever segment ordering was combined with a lower bound based on the triangular 

inequality to yield the true, exact, most similar motif. According to the authors, the 

proposed algorithm was more efficient than existing approaches, including all exact 

and many approximate ones [17]. After this work, a number of improvements have 

been proposed, the majority focusing on eliminating the need to set a fixed segment 

length [18]–[20]. This algorithm, called MOEN [3], is essentially parameter-free, 

and is believed to be one of the most efficient motif discovery algorithms available 

nowadays. However, its complexity is still quadratic in the length of the time series 

[3], and hence its applicability to large-scale time series streams remains 

problematic. In general, exact motif discovery algorithms have important 

restrictions with regard to the dissimilarity measure, and many of them still suffer 

from being non-intuitive and tedious to tune parameters. Moreover, few of them 

allow for anytime versions and, to the best of our knowledge, not one of them is 

able to identify motif pairs containing segments of different lengths. 

In this article, Particle Swarm Optimization Algorithm (PSO) has been used for 

finding motifs through a heuristic algorithms complete search is very time-

consuming. Also, due to rapid advancement in parallel computing, PSO would 

become much faster and more applicable in the future. Joan [20,21] used PSO for 

motif discovery. He showed the effectiveness of PSO in discovering motifs in 

discrete time-series data of genomes. The present paper takes inspiration from 

Joan’s work to find multi-dimensional motifs in multi-dimensional time-series data. 

Then, these motifs are used for forecasting of multi-dimensional time-series data in 

a way similar to [22]. The main contribution of this paper is the development of 

PSO for multi-dimensional motif discovery. 
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This paper is organized as follows. Section 2 discusses the related works. Section 

3 gives various definitions, anytime solution and Particle Swarm optimization 

related to time series motif discovery and pseudo code for the algorithm proposed 

in the present paper. Section 4 presents implementation details and forecasting using 

discovered motifs. Section 5 gives the comparison results between the proposed 

forecasting algorithm and other models and GA based motif discovery. Section 6 

contains the conclusion. 

2. Related Works 

Lin et al., (2002), proposed an efficient algorithm to discover motifs, and 

demonstrated the utility and efficiency of the proposed approach on several real 

world datasets. In their work they carefully motivate, then introduce a non-trivial 

definition of time series motifs. They have formalized the problem of finding 

repeated patterns in time series, and introduced an algorithm to efficiently locate 

them. In addition, a minor contribution of this paper is to introduce the first discrete 

representation of time series that allows a lower bounding approximation of the 

Euclidean distance. This representation may be of independent interest to 

researchers who use symbolic representations for similarity search, change point 

detection, and extracting rules from time series. 

Mueen (2014), described a set of applications of time series motif in various 

domains and elaborate on a certain application in entomology to analyze insect 

behavior. He described definition of motifs, domain based processing and the 

properties of algorithms in detail to picture different approaches and provide 

recommendation on adopting them where appropriate. He shows a comparison 

between motif discovery and similarity search and argue that simple representation 

and similarity measure are sufficient to find good motifs in large datasets. Finally, 

he briefly lists a set of interdisciplinary applications of motif discovery. 

Chiu et al., (2003), generalized the definition of time series motifs to allow for 

don’t-care subsections, and they introduce a novel time- and space-efficient 

algorithm to discover motifs. Their method is based on an algorithm for pattern 

discovery in DNA sequences. The intuition behind the algorithm is to project the 

data objects (in our case, time series), onto lower dimensional subspaces, based on 

a randomly chosen subset of the objects features. The lower dimensional space can 

be quickly post-processed to discover likely candidates for motifs, while the 

candidates can be quickly checked against the original data. 

Castro and Azevedo (2010), tackled the motif discovery problem as an 

approximate Top-K frequent subsequence discovery problem. They fully exploited 

state of the art iSAX representation multiresolution capability to obtain motifs at 

different resolutions. This property yields interactivity, allowing the user to navigate 

along the Top-K motifs structure. This permits a deeper understanding of the time 

series database. MrMotif is scalable and can have a strong impact on different 

application areas due to the good performance and robustness to noise. Further, they 

applied the Top-K space saving algorithm to our frequent subsequences approach. 
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A scalable algorithm was obtained that is suitable for data stream like applications 

where small memory devices such as sensors are used. 

Li and Len (2010), proposed a novel approach, based on grammar induction, for 

approximate variable-length time series motif discovery. Their algorithm offers the 

advantage of discovering hierarchical structure, regularity and grammar from the 

data. The preliminary results are promising. They show that the grammar-based 

approach is able to find some important motifs, and suggest that the new direction 

of using grammar-based algorithms for time series pattern discovery might be worth 

exploring. Several algorithms were proposed to discover motifs of variable lengths; 

however, they either do so via post-processing, scale poorly, or quantize the whole 

data rather than considering overlapping subsequences, resulting in inaccurate and 

incomplete patterns found. 

3. Proposed Methodology and Discovery of Time Series Motif 

3.1 Definition and Task Entanglement 

We can derive a formal, generic similarity-based definition [2] of time series 

motifs. Given a time series z of length n, z = [z1, . . . zn], a normalized segment 

dissimilarity measure D, and a temporal window of interest between wmin and wmax 

samples, the two pk time series motifs M = {m1, . . . mk} correspond to the k most 

similar segment pairs, 

za
wa = [za, . . . za+wa−1] and z bwb = [zb, . . . zb+wb−1], for wa, wb ∈ [wmin, wmax], a ∈ 

[1, n−wa+1], and b ∈ [1, n − wb + 1] 

where, in order to avoid repeated and trivial matches [1], a + wa < b. Thus, the ith 

motif can be fully described by the tuple, mi = {a, wa, b, wb}.  

The motifs in M are non-overlapping1 and ordered from lowest to highest 

dissimilarity such that, D(m1) ≤ D(m2) ≤ · · · ≤ D(mk) where D(mi) = D ({a, wa, b, 

wb}) = D (za
wa, zb

wb). It is important to stress that D needs to normalize with respect 

to the lengths of the considered segments. Otherwise, we would not be able to 

compare motifs of different lengths. 

From the definitions above, we can see that a brute-force search in the motif space 

for the most similar motifs is of O (n2 w∆
2), where w∆ = wmax − wmin + 1 (for the 

final time complexity one needs to further multiply by the cost of calculating D). 

Hence, for instance, in a perfectly feasible case where n = 107 and w∆ = 103, we 

have 1020 possibilities. Magnitudes like this challenge the memory and speed of 

any optimization algorithm, especially if we have no clue to guide the search [24]. 

However, it is one of our main objectives to show here that time series generally 

provide some continuity to this search space, and that this continuity can be 

exploited by optimization algorithms. 

3.2 Continuity 

A fundamental property of time series is autocorrelation, implying that 

consecutive samples in a time series have some degree of resemblance and that, 
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most of the time, we do not observe extremal differences between them. This 

property, together with the established ways of computing similarity between time 

series [23], is what gives continuity to our search space. Consider a typical 

dissimilarity measure like dynamic time warping between z-normalized segments 

and the time series. If we fix the motif starting points a and b to some random values, 

we can compute D (zi
a, zj

b) for i, j = wmin, . . ., wmax. 

3.3 Anytime Solutions  

Finding an optimization algorithm that can locate the global minima of the 

previous search spaces faster than existing motif discovery algorithms can be a 

difficult task. However, we have robust and established algorithms for efficiently 

locating prominent local minima in complex search spaces [25]–[27]. Hence, we 

can intuitively devise a simple strategy: if we keep the best found minima and 

randomly reinitialize the optimization algorithm every time it stagnates, we should, 

sooner or later, start locating the global minima. In the meantime, we could have 

obtained relatively good candidates. This corresponds to the basic paradigm of 

anytime algorithms [11]. Anytime algorithms have recently been highlighted as 

“very beneficial for motif discovery in massive [time series] datasets” [19]. In an 

anytime algorithm for motif discovery, D(mi) improves over time, until it reaches 

the top-k dissimilarity values D(mi)∗ obtained by a brute-force search approach. 

Thus, we gradually improve M until we reach the true exact solution M∗.  

A good anytime algorithm will quickly find low D(mi), ideally reaching D(mi)∗ 

earlier than its non-anytime competitors. Note that a sufficiently good M may 

suffice in most situations, without the need that M = M∗. This is particularly true for 

more exploratory tasks, where one is typically interested in data understanding and 

visual inspection (see [2]), and can also hold for other tasks, as top-k motifs can be 

very similar among themselves. In the latter situation, given a seed within M∗, we 

can easily and efficiently retrieve further repetitions via common established 

approaches [28], [29]. Thus, only non-frequent or singular motifs may be missed. 

These can be valuable too, as the fact that they are non-frequent does not imply that 

they cannot carry important information (think for example of extreme events of 

interest that perhaps only happen twice in a measurement). For those singular 

motifs, we can wait longer if using an anytime algorithm, or we can resort to the 

state-of-the-art if that is able to provide its output within an affordable time limit. 

3.4 Particle Swarm Optimization  

The continuity and anytime observations above (Secs. II-B and II-C) relax the 

requirements for the optimization algorithm to be employed in the considered motif 

spaces. In fact, if we do not have to assess the global optimality of a solution, we 

have a number of approaches that can deal with large, multimodal, continuous but 

noisy search spaces [25]–[27]. Among them, we choose PSO [30]–[34]. PSO is a 

population based stochastic approach for solving continuous and discrete 

optimization problems [33] which has been applied to multimodal problems [35]. It 

is a metaheuristic [27], meaning that it cannot guarantee whether the found solution 
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corresponds to a global optimum. The original PSO algorithm cannot even 

guarantee the convergence to a local optimum, but adapted versions of it have been 

proven to solve this issue [36]. Other versions guarantee the convergence to the 

global optimum, but only with the number of iterations approaching infinity [36]. 

PSO has gained increasing popularity among researchers and practitioners as a 

robust and efficient technique for solving difficult optimization problems. It makes 

few or no assumptions about the problem being optimized, does not require it to be 

differentiable, can search very large spaces of candidate solutions, and can be 

applied to problems that are irregular, incomplete, noisy, dynamic, etc. (see [30]–

[35] and references therein). PSO iteratively tries to improve a candidate solution 

with regard to a given measure of quality or fitness function. Hence, furthermore, it 

can be considered an anytime algorithm. 

3.5 Advantages of an Optimization-Based Solution Using Particle Swarms 

 Notice that treating time series motif discovery as an optimization problem 

naturally yields several advantages: 

1. We do not require much memory, as we can basically store only the stream 

time series and preprocess the required segments at every fitness evaluation.  

2. We are able to achieve a certain efficiency, as optimization algorithms do 

not usually explore the full solution space and perform few fitness 

evaluations [24].  

3. We can employ any dissimilarity measure D as our fitness function. Its only 

requirements are segment length independence and a minimal search space 

continuity. Intuitively, this holds for the high majority of time series 

dissimilarity measures that are currently used. Additionally, we can 

straightforwardly incorporate notions of ‘interestingness’, hubness, or 

complexity (see references in [23]). This flexibility is very uncommon in 

current time series motif discovery algorithms.  

4. We do not need to force the two segments of the motif to be of the same 

length. The dissimilarity function D can expressly handle segments of 

different lengths or we can simply up sample to the largest length (see [22]). 

Although considering different segment lengths has been highlighted as an 

objectively better approach, practically none of the current time series motif 

discovery algorithms contemplates this option. 

5. Since we search for the optimal wa and wb, together with a and b, we do not 

need to set the exact segment lengths as a parameter. Instead, we can use a 

more intuitive and easier to set range of lengths wa, wb ∈ [wmin, wmax].  

6. We can easily modify our fitness criterion to work with different task 

settings. Thus, just by replacing D, we are able to work with multi-

dimensional time series [37], detect sub-dimensional motifs [38], perform a 

constrained motif discovery task [16], etc.  
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7. We can incorporate notions of motif frequency to our fitness function and 

hence expand our similarity-based definition of motif to incorporate both 

notions [2]. 

 3.6. Proposed Particle Swarm Algorithm 

This innovative strategy to time series motif identification is based on the 

combination of two well-known extensions to the canonical PSO [31]. On one hand, 

we employ multiple initializations of the swarm on stagnation [39]. On the other 

hand, we exploit the particles’ “local memories” with the intention of forming stable 

niches across different local minima [40]. The former emulates a parallel multi-

swarm approach [35] without the need of having to define the number of swarms 

and their communication. The latter, when combined with the former, results in a 

low-complexity niching strategy [35] that does not require niching parameters (see 

the related discussion in [41], [42]). the implementation of the two extensions, is 

detailed in Algorithm. 

Implementation takes a time series z of length n as input, together with a segment 

dissimilarity measure D, and the range of segment lengths of interest, limited by 

wmin and wmax. The user also needs to specify k, the desired number of motifs, 

and tmax, the maximum time spent by the algorithm (in iterations5). The 

implementation outputs a set of k non overlapping motifs M. We implement M as a 

priority queue, which typically stores more than k elements to ensure that it contains 

k non-overlapping motifs. This way, by sorting the motif candidates as soon as they 

are found, we allow potential queries to M at any time during the algorithm’s 

execution. In that case, we only need to dynamically check the candidates’ overlap. 

Notice that n, D, wmin, wmax, k, and tmax are not parameters of the algorithm, but 

requirements of the task (they depend on the data, the problem, and the available 

time). The only parameters to be set, as specified in Algorithm 1’s requirements, 

are the number of particles κ, the topology θ, the constriction constant φ, and the 

maximum amount of iterations at stagnation τ. Nevertheless, we will show that 

practically none of the possible parameter choices introduces a significant variation 

in the reported performance. Having clarified the implementation’s input, output, 

and requirements, we now elaborate on its procedures. 

Input: Time series z of length n, dissimilarity measure D, minimum and maximum 

segment length wmin and wmax, number of motifs k, and maximum amount of time 

(number of iterations) tmax. 

Require: Number of particles κ, topology θ, constriction constant φ, and maximum 

amount of time at stagnation (number of iterations) τ. Output: A set of motifs M.  

1: c0, c1, c2 ← GET CONSTANTS (φ)  

2: X, V, S, P ← INITIALIZE SWARM (n, wmin, wmax, κ)  

3: Θ ← INITIALIZE TOPOLOGY (θ, κ)  

4: s ∗ ← ∞  

5: M ← EMPTY PRIORITY QUEUE ()  
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6: for t = 1, . . . tmax  

7: for i = 1, . . . κ  

8: if VALIDPOSITION (xi) 

9: d ← D(xi) 10: if d < si  

11: si ← d  

12: pi ← xi  

13: M. PUSH (d, xi)  

14: if d < s∗  

15: s ∗ ← d  

16: tupdate ← t  

17: for i = 1, . . . κ  

18: g ← i  

19: for j in Θi  

20: if sj ≤ sg  

21: g ← j  

22: vi ← c0vi + c1u1 ⊗ (pi − xi) + c2u2 ⊗ (pg − xi)  

23: xi ← xi + vi  

24: if t − tupdate = τ  

25: X, V, S, P ← INITIALIZE SWARM (n, wmin, wmax, κ)  

26: s ∗ ← ∞  

27: return NON OVERLAPPING (M, k) 

Algorithm starts by computing the velocity update constants (line 1) following 

Clark’s constriction method [43].  

𝐶0 =
2

|2−∅−√∅2−4∅|
       and        C1 = C2 = C0 Ø/2            (1) 

Next, a swarm with κ particles is initialized (line 2). The swarm is formed by four 

data structures: a set of particle positions X = {x1, . . . xκ}, a set of particle velocities 

V = {v1, . . . vκ}, a set of particle best scores S = {s1, . . . sκ}, and a set of particle 

best positions P = {p1, . . . pκ} (the initialization of these four data structures is 

detailed in following algorithm. 

Input: Time series length n, minimum and maximum segment length wmin and 

wmax, and number of particles κ.  

Output: Particle positions X, velocities V, best scores S, and best positions P.  

1: for i = 1, . . . κ  

2: xi,2 ← wmin + (wmax + 1 − wmin) u  

3: xi,4 ← wmin + (wmax + 1 − wmin) u  

4: xi,1 ← 1 + (n − xi,2) (1 − √ u)  

5: xi,3 ← 1 + (n − xi,4 − (xi,1 + xi,2)) u  

6: x 0 ← As in lines 2–5  

7: vi ← x 0 − xi  

8: si ← ∞  

9: pi ← xi  

10: return X, V, S, P. 



International Journal of Future Generation Communication and Networking 

Vol. 13, No. 3, (2020), pp. 98 - 114 

 

106 ISSN: 2233-7857 IJFGCN  

Copyright ⓒ 2020 SERSC 
 

Particles’ positions xi and pi completely determine a motif candidate, and have a 

direct correspondence with mi. A further data structure Θ indicates the indices of 

the neighbors of each particle according to a given social topology θ (line 3). Apart 

from the swarm, we also initialize a global best score s ∗ (line 4) and the priority 

queue M (line 5). We then enter the main loop (lines 6–26). In it, we perform three 

main actions. Firstly, we compute the particles’ fitness and perform the necessary 

updates (lines 7–16). Secondly, we modify the particles’ position and velocity using 

their personal and neighborhood best positions (lines 17–23). Thirdly, we control 

for stagnation and reinitialize the swarm if needed (lines 24–26). Finally, when we 

exit the loop, we return the first k non-overlapping motif candidates from M (line 

27). 

4. Implementation  

 Firstly, positions are floored component-wise inside VALIDPOSITION, D, and 

M (thus obtaining motif mi). Secondly, the motif priority queue M is implemented 

as an associative container (logarithmic insertion time) that sorts its elements 

according to d and stores mi. Thirdly, the last visited positions are cached into a 

hash table (constant lookup time) in order to avoid some of the possible repeated 

dissimilarity computations. Fourthly, we incorporate the option to constrain the 

motif search by specifying a maximum segment stretch in Algorithm 2 and 

VALIDPOSITION. Finally, the function that returns the non-overlapping top-k 

motifs employs a Boolean array of size n in order to avoid O(k2) comparisons 

between members of the queue (cf. [3]). Notice that we have a memory efficient 

implementation, as we basically only need to store z and the Boolean array (both of 

O(n) space), M (of O(k) space, k << n), and X, V, S, P, and Θ (all of them of O(κ) 

space, κ << n). The aforementioned hash table (optional) can be allocated in any 

predefined, available memory segment. 

PSO codes were implemented using the Python Deap module [27]. The Deap 

module provides great flexibility to code different kinds of PSO. The experiments 

were conducted on real and synthetic time-series data-sets. The synthetic data-set 

consisted of time-series data which was first filled with random values between 0 

and 1. Then, motifs were implanted in each time series at random locations. The 

real data was collected from Thomas Reuters Eikon tool. It consisted of the End-of-

Day (EOD) prices of some companies listed in S&P 500 NYSE, all belonging to the 

same subsector. The companies belonging to the same experiment were selected in 

such a way that the prices of each of those companies were useful in predicting the 

prices of other companies. Also, to verify this, Granger causality test was done on 

random pairs of these companies, and it was found that the past prices of one 

company are useful in predicting the future prices of another company. 

The algorithm was used for forecasting in the data mentioned above. Forecasts 

were obtained from the proposed algorithm for some of the future timestamps and 

dimension. Then, forecasting was done for these timestamps and dimensions using 

GA based motif discovering, Vector Auto-regressive (VAR) model and random 
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walk model. All these forecasts were compared to the actual price values. The Mean 

Absolute Deviation (MAD) error was calculated for each of these models which is 

given by 

𝑀𝐴𝐷 =  
∑𝑁

𝑖=0   |𝑝𝑖 − 𝑡𝑖|

𝑁
 

where pi, ti, and N denote the ith prediction, ith target value, and the total number of 

predictions, respectively. Each set of experiments is characterized by the following 

parameters: train length, population length, number of generations, test length, 

distance threshold, variance, and evaluation measures. Here, train length refers to 

the length of multi-dimensional time series used for finding potential motifs. 

Population length refers to the number of individuals in the initial population 

supplied to the PSO. Then, the number of individuals in the population remains the 

same, at the end of each generation.  

The number of iterations done by the PSO is equivalent to the “number of 

generations.” In each generation/iteration, various operators like mate operator, 

mutation operator, selection operator are applied to the population members. In the 

experiments conducted, population length, train length, and the number of 

generations were taken to be 1000, 1000, and 1500, respectively. Test length is a 

parameter which is strictly greater than train length. The time-series timestamps 

whose value is greater than train length and less than or equal to test length are given 

to the proposed algorithm to predict their values. Then, the proposed algorithm 

predicts values only for some of the timestamps and along certain dimensions. 

“Distance threshold” refers to the distance value such that all motif instances of a 

motif are less than this distance apart from each other. Also, the prediction is only 

made by a motif if the distance between the initial subpart of a motif and the 

corresponding values in the test data-set is less than this distance threshold. If more 

than one motifs are within this distance threshold, then all those motifs are 

considered while doing forecasts. “Variance” column refers to the limit on the 

variance. The predicted value at any point has a variance attached to it as explained 

earlier. Then, the prediction is only considered for final evaluation if that variance 

is less than this variance value. Intuitively, “variance” limits the risk in all the 

predicted values by placing a threshold on the variance of the predicted value. The 

value of “variance” is taken to be infinite except otherwise stated. “MAD motif” 

refers to the MAD error between the predicted values by the proposed algorithm 

and the actual values. “MAD VAR” refers to the MAD error between the predicted 

values by the VAR prediction model and the actual values. Similarly, “MAD 

halves” correspond to the natıve random walk model. 

In experiments with the “number of generations” equal to 1500, around 2 hours 

of clock time was utilized by the Python codes while running on a single core of 8 

GB RAM 3.4 GHz machine. The good results of these experiments may be 

attributed to the choice of initial parameters which were not chosen randomly, but 

extensive experimentation was also not done for fixing the parameters for each 
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experiment. Predicting financial stock prices is a rather difficult problem, and even 

small success in the following experiments indicates that the proposed algorithm 

may become much more applicable in other domains. Also, the underlying 

assumption in all these experiments is that motifs are present in the datasets, which 

can be utilized for making predictions. 

Finally, as execution time t progresses, we see that the algorithm consistently 

retrieves lower dissimilarities, up to the point that M ' M∗. Following the condition, 

we specify, this means that the distances in the motif set obtained by algorithm are 

not statistically worse than the ones of the true exact motif set. Overall, we believe 

this is an extremely competitive performance for an anytime motif discovery 

algorithm. 

4.1. Forecasting Through Discovered Motifs 

The above discussion was about the use of PSO for discovering potential motifs. 

Still, these motifs need to be processed and then used for forecasting. The 

individuals obtained through the PSO are processed mainly to identify individuals 

which represent the same motif. The motif instances in these individuals are 

combined to form a single motif. The motifs thus obtained are used for forecasting. 

The pseudo codes for the two different parts of the algorithm are briefly explained 

in the following. 

This part of the code is used for identifying relevant motifs, which are then used for 

making forecasts. 

(1) Remove individuals with the distance between motif instances greater than 

the “distance threshold.” 

(2) From all the pool of individuals, group individuals with the same structure. 

(3) From the groups obtained above, separate the two motif instances from each 

individual and put them all in a basket corresponding to each group. 

(4) From the separate baskets obtained above, cluster motif instances which are 

close to each other in terms of the distance measure. 

(5) Finally, all the different clusters obtained in Step 4 from all the baskets are 

identified and stored separately. 

(6) Here, each cluster would have a minimum of two motif instances. Each of 

these clusters represents a motif and is used for forecasting purposes. 

The motifs obtained above are used for making forecasts using the algorithm 

described as follows: 

(1) Choose the location/timestamp in the motif structure of each motif, which 

would be mapped to the first predicted timestamp by this corresponding 

motif. Let this timestamp be called “break-point.” In the present paper, 

“break-point” is always chosen to be the last timestamp amongst all 

dimensions. 

(2) Compare the past values before the break-point from each motif to the 

corresponding latest values in the test data-set. 
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(3) Single-out the motifs which match best according to the distance measure 

chosen. 

(4) Use these motifs to predict the time-series values in certain dimensions in 

the next timestamp. The predicted value is the mean of the specific “motif 

structure timestamp” values in all motif instances of all different motifs. The 

prediction also comes attached with a variance of prediction which is the 

variance of the timestamp value amongst all motif instances of all different 

motifs used for prediction. 

5. Experimental Results and Discussions 

Three experiments were conducted on simulated data-sets using proposed system 

and documented. This data-set consisted of two-dimensional time-series data with 

2000 timestamp values, initially filled with random values between 0 and 1. Then, 

two multidimensional motifs were planted into the time-series data-sets. Each motif 

was planted at eight random locations in the time series. Four locations were chosen 

from training timestamps (1–1000) and four locations were chosen from test 

timestamps (1001–2000). Table 1 give the results of the experiments. 

TABLE 1 

 THE TWO MOTIFS INSERTED INTO SIMULATED DATA 2  

Timestamp 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Dimension1 0.96 0.55 0.68 0.83 0.52 0.54 0.19 0.15 0.80 0.90 0.28 0.69 0.62 0.72 

Dimension2 0.09 0.79 0.78 0.31 0.83 0.38 0.73 0.70 0.36 0.96 0.68 0.79 0.72 0.02 

Dimension3 0.16 0.70 0.78 0.98 0.58 0.72 0.04 0.14 0.47 0.41 0.79 0.96 0.33 0.61 

Dimension4 0.93 0.71 0.35 0.17 0.92 0.77 0.64 0.10 0.47 0.11 0.46 0.04 0.53 0.86 

Dimension5 0.49 0.34 0.06 0.30 0.17 0.55 0.99 0.12 0.88 0.38 0.08 0.83 0.12 0.69 

 

Here, “MAD halves” give the MAD value for the natıve model which predicts each 

value as 0.5. Here, the average MAD value of all predictions for the proposed, GA 

based, VAR, and natıve models comes out to be0.0468, 0.0474, 0.2672, and 0.2725, 

respectively. Lesser MAD value of the proposed model shows its superiority over 

other models. 

TABLE 2 

 RESULTS ON SIMULATED DATA 1 

S.N

O 

Distance 

Threshol

d 

Test 

End 

MAD 

Motif 

(PSO) 

MAD 

Motif 

(GA) 

MAD 

VAR 

MAD 

Halves 

Number 

of 

Predicti

on 

Mean 

Gain 

Total 

Gain 

1 0.06 1100 0.0750 0.0757 0.3295 0.4181 1 0.3425 0.3425 

2 0.065 1100 0.0750 0.0757 0.3295 0.4181 1 0.3425 0.3425 

3 0.06 1500 0.0520 0.0528 0.2597 0.2851 9 0.2322 2.09 
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4 0.065 1500 0.0489 0.0496 0.2447 0.26 10 0.2104 2.1037 

5 0.06 2000 0.0615 0.0625 0.2771 0.2692 14 0.2067 2.8936 

6 0.065 2000 0.0497 0.0504 0.2197 0.2138 19 0.1633 3.1034 

7 0.06 1100 0.0749 0.0757 0.3295 0.4181 1 0.3425 0.3425 

8 0.065 1100 0.0749 0.0757 0.3295 0.4181 1 0.3425 0.3425 

9 0.06 1500 0.0375 0.0384 0.3037 0.3456 7 0.3071 2.1497 

10 0.065 1500 0.0350 0.0362 0.2794 0.3067 8 0.2704 2.1634 

11 0.06 2000 0.0389 0.0398 0.3172 0.3018 13 0.262 3.4065 

12 0.065 2000 0.0344 0.0353 0.2555 0.2389 17 0.2036 3.4065 

 

5.1. Simulated Data 2 

This data-set consisted of five-dimensional time series. Two multi-dimensional 

motifs were planted into the time-series data-set in the same way as done in 

synthetic data 1. Almost no predictions were made by the algorithm when the 

number of generations was equal to 1500. Thus, the experiments were repeated with 

the number of generations increased to 15,000. Then, the algorithm was able to 

identify the planted motifs and made relevant predictions at future motif 

occurrences. Table 1 gives the results of the experiments. Here, the average MAD 

value of all predictions for the proposed, GA based, VAR, and natıve models comes 

out to be 0.1458,0.1461, 0.3168, and 0.3311, respectively. 

      

TABLE.3 

RESULT ON SIMULATED DATA 2 

S.N

O 

Distance 

Threshol

d 

Test 

End 

MAD 

Motif 

(PSO) 

MAD 

Motif 

(GA) 

MAD 

VAR 

MAD 

halves 

Number 

of 

Predicti

on 

Mean 

Gain 

Total 

Gain 

1 0.06 1100 0.0000 0.0000 0.2879 0.1242 1 0.1242 0.1242 

2 0.065 1100 0.0000 0.0000 0.2879 0.1242 1 0.1242 0.1242 

3 0.06 1500 0.0000 0.0000 0.2879 0.1242 1 0.1242 0.1242 

4 0.065 1500 0.1010 0.1018 0.3836 0.2260 2 0.1242 0.2485 

5 0.06 2000 0.0000 0.0000 0.2879 0.1242 1 0.1242 0.1242 

6 0.065 1100 0.1011 0.1018 0.3836 0.2260 2 0.1242 0.2485 

7 0.06 1100 0.1720 0.1730 0.4446 0.3933 2 0.2202 0.4405 

8 0.065 1500 0.1725 0.1730 0.4446 0.3511 2 0.2202 0.4405 

9 0.06 1500 0.1970 0.1976 0.2942 0.3511 6 0.1535 0.9209 

10 0.065 2000 0.1972 0.1976 0.2942 0.3785 6 0.1535 0.9209 

11 0.06 2000 0.1475 0.1482 0.2924 0.3785 8 0.2302 1.8419 

12 0.065 2000 0.1475 0.1482 0.2924 0.3785 8 0.2302 1.8419 

 

It can be noted that positive “Mean gain” value for the data sets denote better 

performance of the proposed algorithm.  Three different test ends are selected and 
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the corresponding MAD values against randomly selected test ends are plotted in 

bar graph to compare the performance of our proposed PSO based Motif discovery 

methodology as given below.  

 

 

 
Fig. 1 Comparison of Performance through MAD of Proposed System with 

Various Existing Models 

 

 

From Fig, 1 it is clearly noted that the lower MAD values of our proposed PSO 

based Motif discovery strategy depicts the higher performance when compared with 

various existing models like GA based Motif discovery, VAR model and the native 

model. 

5.2. Simulated Data 3 

This data-set consisted of nine-dimensional time series. As in the last two cases, 

two multi-dimensional motifs were planted into the time-series data-sets. Motifs 

were discovered by the algorithm when the number of generations was equal to 

1500. Then, similarly as in the past experiments, the number of generations was 

increased to 15,000. A strategy to find optimal parameters is achieved. Other 

distance measures are tried, further improves the results. The proposed PSO motif 

discovery algorithm was compared with GA based motif discovery algorithms. 

Moreover, the proposed algorithm was tested on time-series data of other domains. 

Overall, the result of our pre-analysis suggests a high degree of robustness with 

respect to the possible configurations. We believe that the reported stability of 

proposed PSO based motif against the tested configurations and data sets justifies 

the use of our setting for finding motifs in diverse time series coming from further 

application domains. 
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6. Conclusion 

In this article, we proposed an innovative standpoint to the task of time series 

motif discovery by formulating it as an anytime multimodal optimization problem 

using a new forecasting algorithm based on motifs discovered through a PSO. The 

forecast values were compared with forecasts from VAR predicting model, a natıve 

model and GA based Motif discovering. The proposed algorithm was tested on 

synthetic datasets. The results demonstrate the effectiveness of the proposed 

algorithm. Also, the proposed algorithm is very flexible and can be applied to 

diverse domains by modification in the definition of a motif. The proposed 

algorithm can be used to do multi-dimensional time-series forecasting in domains 

like weather forecasting, stock market prediction, economics, and energy 

forecasting. 
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