
International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

439

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Enforcing Security in Replicated DRTDBS

Pratik Shrivastava1, Udai Shanker2

1,2Department of CSE, MMMUT, Gorakhpur

Abstract

 Timeliness and temporal consistency are the two primary requirements of DRTDBS (Distributed

Real-Time Database System). Timeliness is express in the form of a deadline, and the scheduler

assigns the priority based on the timeline. There exist different non-deterministic factors in the

DRTDBS that make it challenging to meet the deadline timely. Distributed processing, limitation

of system memory, the existence of single version data item, and access latency are some of them.

The replication technique is incorporated into this system to extricate such issues. This technique

improves the timeliness but compromises in mutual consistency. Replication protocol is design to

simultaneously improves timeliness and mutual consistency between data replicas in the system.

Existing replication protocol neither prevents the occurrence of a covert channel nor prevents the

unauthorized access. Thus, embedding security in the replicated DRTDBS (RDRTDBS) becomes

an essential part of the research for the researchers. In the present paper, our main objective is to

prevent covert channels in between low clearance level and high clearance level real-time

transactions (RTTs) and to prevent the unauthorized access of messages propagating in the

network. Our proposed solution is incorporated in the system model (Shrivastava, P., Shanker, U.,

2018c) such that our solution work for inside and outside security in the homogeneous working

environment of RDRTDBS. We have implemented and tested our proposed solution using different

parameters. The experimental result shows that our proposed solution is beneficial for real-time

applications that demand security, timeliness, and mutual consistency.

Keywords: Replication Protocol, Security, RDRTDBS, Covert Channel, Mutual Consistency

Biographical notes: (ABS)

This paper is a revised and expanded version of an article entitled ‘Replica control following 1SR

in DRTDBS through best case of transaction execution’ presented at the ‘ICDIS 2017’, IGNTU,

Amarkantak, India, November 3-4, 2017.

1 Introduction

Nowadays, the database system is being incorporated into many organizations and is shared

among different users (Elmasri, R., 2008). This system is of two types: (i) distributed and (ii)

centralized. In a centralized database system, all data items are confining to a single location. On

the other hand, the distributed database distributes the data items in different sites. These database

sites are connected using the internet/intranet. The primary correctness factor of the centralized

and distributed database system is throughput. Thus, researchers have researched on improving

the performance of the system (Garcia-Molina et al., 1990). As the database continues to evolve,

various systems such as a real-time system, mobile system, and spatial reference system use the

database as a back end. Real-time systems often require predictable processing and timely access

to data items (Ulusoy, Ö., 1995b). DRTDBS is explicitly designing for the efficient processing of

such data items (Shanker, U. et al., 2008).

Timeliness and temporal consistency are the two primary requirements of DRTDBS. Timeliness is

express in the form of a deadline, and the scheduler assigns the priority based on the timeline.

Missing the deadline of admitted request/RTTs causes massive loss or a few losses in the system.

Based on the consequence of failure, RTT is od three types: (i) hard RTT, (ii) soft RTT, and (iii)

firm RTT (Ginis et al., 1998; Kao et al., 1994; Ulusoy, Ö., 1995a). Hard RTT possesses a strong

requirement for meeting the deadline. Missing the deadline for hard RTT causes serious

catastrophic in the system. Soft RTT does not own the substantial condition of meeting the

 International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

440

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

deadline. Thus, soft RTT does not abort on missing the deadline. Firm RTT possesses a strong

requirement for meeting

the deadline. However, on missing its deadline, firm RTT does not leave any valuables in the

system (Wang, F. et al., 2011). Hence, firm RTT abort on missing the period, such that the

remaining RTT gets the system resources for processing.

An admitted request/RTT includes a set of operations and operands. An operation is the

processing element that works on data value, whereas operands are the real place holder of such

data values. The RTT is processed locally or globally that depends on the availability of a data

item in the node (i.e., local or global). A Global RTT establishes one coordinator and more than

one cohorts. A Coordinator creates the cohorts and assigns the subset of operations to each cohort.

All cohorts process the activities and revert the result to the coordinator (Shanker, U. et al., 2008).

During RTT processing in the DRTDBS, there exist different non-deterministic factors that make

it challenging to meet the RTT deadline timely. Distributed processing, the existence of single

version data items, access latency, and limitation of system memory are some of them. The

primary non-deterministic factor is distributed processing. The Distributed processing of RTT

causes propagation delay and site delay that makes it rigorous to meet the RTT deadline

(Shrivastava, P. et al., 2018b). The second non-deterministic factor is the existence of a single

version of data items. A Single version data item allows only single RTT to process in the system

and remaining RTT to wait for (Shrivastava, P. et al., 2018b) in the waiting queue. Hence, the

existence of a single version data item also makes it rigorous to meet the RTT deadline. The Third

non-deterministic factor is access latency caused by the memory that makes the RTT severe to

meet the deadline. The last non-deterministic factor is the limitation of system memory that cause

RTT to wait for processing in the system. Hence, in DRTDBS, these non-deterministic factors

need to solve such that timeliness and consistency demand of DRTDBS get easily satisfied.

The data replication technique is one of the options of DRTDBS, which enhances the availability,

scalability, fault-tolerance, and reliability of the system (Shrivastava, P. et al., 2018b). This

technique extricates the issue of distributed processing, the existence of single version data item,

access latency, and limitation of system memory via creating the data replicas in a higher number

of sites. The presence of data replicas prevents the distributed processing of global RTT such that

meeting the timeliness demand of admitted RTT becomes easy. Since data replicas exist in a

greater number of locations, load sharing becomes easy. This load sharing technique allows

waiting RTT to process on another available data replica. The main memory-based DRTDBS

redresses the problem of access latency and limitation of system memory. In the present paper, we

specifically focus on the data replication technique rather than the main memory-based DRTDBS.

Due to the advantages offered by the data replication, we have incorporated data techniques in the

DRTDBS to extricate the issues of processing global RTT. Although, data replication technique

improves the timeliness but compromises in the mutual consistency of the replicated data item.

Hence, researchers are researching in the replicated DRTDBS (RDRTDBS) to solve the issue of

mutual consistency (i.e., 4W-H). This 4W-H stands for when to replicate, why to replicate, where

to replicate, what to replicate, and how to replicate. Among all researches, the majority of

researchers have proposed the solution for how to replicate. Replication protocol solves the issue

of how to replicate. The replication protocol simultaneously improves the timeliness and mutual

consistency of the system.

Existing replication protocol of distributed database systems is of two types: (i) eager and (ii) lazy

(Breitbart, Y. et al., 1997). Eager propagation follows strict consistency criteria, whereas lazy

distribution follows weaker consistency criteria — these both propagation mechanisms deprived

of real-time constraints. Thus, RDRTDBS (Son, S. 1987.) does not use the replication protocol of

the distributed database. In RDRTDBS, Researchers have proposed new replication protocols

(Andler S.F. et al., 1996; El-Bakry et al., 2012; Gustavsson S. et al., 2005; Gustavsson S. et al.,

2004; Kim, Y.K., 1996; Mathiason, G. et al. 2007; Peddi, P. et al. 2002; Said A.H. et al., 2008;

International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

441

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Salem R. et al. 2016; Shrivastava, P. & Shanker, U.; Shrivastava P. & Shanker U., 2018cc;

Shrivastava P. & Shanker U. 2019a; Shrivastava P. & Shanker U. 2019b; Shrivastava P. &

Shanker U. 2020; Son, S., 1987; Son, S.H. & Kouloumbis S., 1993; Son, S.H. & Zhang, F. 1995;

Son S.H. et al., 1996; Srivastava A., &Shankar U.; Syberfeldt, S., 2007; Xiong M. et al., 2002)

which simultaneously satisfies mutual consistency and timeliness. These replication protocols

(Andler S.F. et al., 1996; El-Bakry et al.,

2012; Gustavsson S. et al., 2005; Gustavsson S. et al., 2004; Kim, Y.K., 1996; Mathiason, G. et al.

2007; Peddi, P. et al. 2002; Said A.H. et al., 2008; Salem R. et al. 2016; Shrivastava, P. &

Shanker, U.; Shrivastava P. & Shanker U., 2018c; Shrivastava P. & Shanker U. 2019a;

Shrivastava P. & Shanker U. 2019b; Shrivastava P. & Shanker U. 2020; Son, S., 1987; Son, S.H.

& Kouloumbis S., 1993; Son, S.H. & Zhang, F. 1995; Son S.H. et al., 1996; Srivastava A.,

&Shankar U.; Syberfeldt, S., 2007; Xiong M. et al., 2002) neither prevents the occurrence of

covert channel nor prevents the unauthorized access.

Thus, embedding security in the RDRTDBS becomes an essential part of the research for the

researchers. Although incorporating security becomes most necessary in the current scenario, but

simultaneously satisfying real-time requirements with security are the most challenging issue in

the RDRTDBS. The factors responsible for such an argument is as follows.

1. Limitation of database kernel code extendibility- In RDRTDBS, database kernel broadly

possesses the work of concurrency control, buffer management, scheduling the RTT, and replica

management. Database kernel embeds replication logic to manage replica management. This logic

is tightly coupled with the concurrency control and commit protocol. Hence, it is not easy to easily

modify the replication logic. Altering the replication logic affects the performance of concurrency

control and vice versa. Thus, a solution is required that brings independence between replication

logic and concurrency control or replication logic and commit protocol. Additionally, extending

the database kernel with new code is also most rigorous. Thus, extending the database kernel with

security policy is the most challenging issue in the RDRTDBS (Shrivastava P. & Shanker, U.

2018b).

2. Existence of covert channel- This channel causes the indirect flow of information between

conflicted low clearance level and high clearance level RTTs. The existing security model (i.e.,

bell Lapadula) partially secures the system and does not prevent the indirect flow of information.

Thus, preventing the occurrence of the covert channel in the RDRTDBS is another challenging

issue in the RDRTDBS (Son S.H. & Thuraisingham, B., 1993).

3. Existence of external security threats. In RDRTDBS, plain text propagates as an update

message in the network. This communication of plain text allows the attackers to trap the message

and read the content easily. Similarly, an unauthorized user can modify the message and send the

modified signal to the original recipient. Hence, securing the message is also most essential in

RDRTDBS such that unauthorized use does not cause harm in the system (Shrivastava, P. et al.,

2014).

In RDRTDBS, these mentioned issues need to be solved such that security and real-time

constraint get satisfied. In the present paper, our proposed solutions address the question of

enforcing security to prevent covert channels and unauthorized access. However, existing

solutions offered in (Shrivastava P. & Shanker U., 2018a) solve the issue w.r.t limitation of

database kernel code extendibility.

The rest of the paper is as follows. In section 2, the security model discusses unauthorized access

inside the system via the covert channel and outside the system via the network. Section 3 presents

the solution for open factors such as limitation for kernel code extendibility, the existence of

covert channel, and the existence of external security threats. The experimental setting and results

are discussed and presented in section 4. Related work is analyzed and presented in section 5, and

Finally, in section 6, conclusion and future scope are presented.

 International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

442

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

2 Security Model

Due to the evolution of database technology, various real-time applications such as financial

services, online stock trading, air traffic control system and soon uses RDRTDBS as a back end

for storing their data value. In these real-time applications, information propagates hierarchically.

During information propagation, it is necessary to secure the data from unauthorized access such

that illegal insider and outsider cannot access the data, and the system remains in a safe state.

Existing research work conducted for embedding security

policy in the DRTDBS shows promising results, whereas research towards RDRTDBS is zero.

Hence, in RDRTDBS, our objective is to enforce security policy such that simultaneously

security, mutual consistency, and timeliness is satisfied. Specifically, we aim to prevent covert

channels inside the system and unauthorized access outside the network.

2.1 Covert Channel Inside the System

Existing security policies for DRTDBS are of two types (i)multilevel security policy and (ii)

discretionary policy. A discretionary security policy verifies the type of access and the identity of

the user to prevent unauthorized access. However, such a strategy cannot prevent the unauthorized

disclosure of information. Thus, the system rarely uses this policy. On the other hand, a multilevel

security policy is the most frequently used security model in the DRTDBS (Ebrahim Abduljalil,

D., 2017). Bell Lapadula is a multilevel security model that consists of objects and subjects (Bell,

D.E., LaPadula, L.J., 1973). This model is most frequently used to prevent unauthorized access. In

Bell Lapadula security model, objects represent the record or file or data, whereas subjects

represent the process. This model consists of two restriction policies named * property and simple

security property, which prevents the direct flows of information from high clearance level RTT to

low clearance level RTT. The bell Lapadula model offers more security but suffers from the

occurrence of the covert channel in the system. A covert channel occurs when different processes

have different clearance levels and the conflict on the same data. This conflict causes only one

RTT to work and others to wait. Due to the non-availability of data waiting, RTT gets delayed.

This presence of delay causes processing RTT to encode information and pass on to another

clearance level RTT. Thus, preventing the occurrence of a covert channel is necessary to secure

the RDRTDBS.

To prevent the occurrence of the covert channel, high clearance level RTT should never delay the

processing of low clearance level RTT. Similarly, value accessed by the low clearance level

should not be changed by the high clearance level RTT. Hence, to secure the system from covert

channel following properties need to be satisfied (David, R., Son, S.H., Mukkamala, R., 1995).

1. Delay Security- In delay security, a high clearance level RTT should never delay the low

clearance level RTT to process in the system.

2. Value Security- In value security, the value accessed by the low clearance level RTT

should not be changed by the high clearance level RTT.

3. Recovery Security- When delay security and value security are taken together in the

system, it is called deadlock.

As already mentioned in our previous section that security, timeliness, and mutual consistency

becomes the primary requirement of RDRTDBS. However, simultaneously satisfying all these

properties is not easy in the RDRTDBS because, in DRTDBS, there is always a trade-off between

security and timeliness. Hence, meeting mutual consistency, timeliness, and safety is also most

challenging in the RDRTDBS.

In the rest of this section, we have presented different scenarios that report when timeliness and

security will be satisfied or compromised in the DRTDBS. This scenario is designed based on the

priority value and clearance level of RTT. This scenario helps in developing the solution for

International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

443

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

RDRTDBS that simultaneously satisfy mutual consistency, timeliness, and security. For simply

understanding these scenarios, we have considered only two RTTs. However, in real-time, there

are several RTTs.

Let us consider first RTT R1 possesses priority P1 and clearance level L1. Similarly, second RTT

R2 own priority P2 and clearance level L2. T1 and T2 represent the time instance and T1<T2.

1. Scenario 1- If P1 > P2 and L1 < L2, then the result for processing R1 and R2 at different

time instances are shown in table 1.

Table 1. Scenario 1

Condition T1 T2 Timeliness Security

1st R1 R2

2nd R2 R1

In this scenario, the scheduler must prevent the condition 2nd such that both timeliness and security

get satisfied.

2. Scenario 2- If P1 < P2 and L1 > L2, then the result for primarily processing R1 and

then R2 is shown in table 2.

Table 2. Scenario 2

Condition T1 T2 Timeliness Security

1st R1 R2

2nd R2 R1

In this scenario, the scheduler must prevent the condition 1st such that both timeliness and

security get satisfied.

3. Scenario 3- If P1 > P2 and L1 > L2, then the result for processing R1 at R2 at different

time instances is shown in table 3.

Table 3. Scenario 3

Condition T1 T2 Timeliness Security

1st R1 R2

2nd R2 R1

In this scenario, there is always a trade-off between security and timeliness. Thus, based on user

demand scheduler may prefer either case 1st or case 2nd.

4. Scenario 4- If P1 < P2 and L1 < L2, then the result for processing R1 at R2 at different

time instances are shown in table 4.

Table 4. Scenario 4

Condition T1 T2 Timeliness Security

1st R1 R2

2nd R2 R1

In this scenario also there is always a trade-off between security and timeliness. Thus, based on

user demand scheduler may prefer either case 1st or case 2nd.

5. If P1 == P2 and L1 > L2, then the result for processing R1 at R2 at different time instances

is shown in table 5.

Table 5. Scenario 5

Condit ion T1 T2 Timeliness Security

1st R1 R2

2nd R2 R1

In this scenario, the scheduler must prevent condition 1st such that both timeliness and security

get satisfied.

 International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

444

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

6. Scenario 6- If P1 > P2 and L1 == L2, then the result for processing R1 at R2 at different

time instances are shown in table 6.

Table 6. Scenario 6

Condition T1 T2 Timeliness Security

1st R1 R2

2nd R2 R1

In this scenario, the scheduler must prevent the condition 2nd such that both timeliness and

security get satisfied.

7. Scenario 7- If P1 == P2 and L1 < L2, then the result for processing R1 at R2 at different

time instances is shown in table 7.

Table 7. Scenario 7

Condition T1 T2 Timeliness Security

1st R1 R2

2nd R2 R1

In this scenario, the scheduler must prevent the condition 2nd such that both timeliness and

security get satisfied.

8. Scenario 8- If P1 < P2 and L1 == L2, then the result for processing R1 at R2 at different

time instances is shown in table 8.

Table 8. Scenario 8

Condition T1 T2 Timeliness Security

1st R1 R2

2nd R2 R1

In this scenario, the scheduler must prevent the condition 1st such that both timeliness and

security get satisfied.

9. Scenario 9- If P1 == and L1 == L2, then the result for processing R1 at R2 at different time

instances are shown in table 9.

Table 9. Scenario 9

Condition T1 T2 Timeliness Security

1st R1 R2

2nd R2 R1

In this scenario, the scheduler may select condition 1st or condition 2nd. In both cases, timeliness

and security get satisfied.

From the above set of scenarios, it is clear that trade-off between real-time constraint and security

occurs only scenario three and scenario 4. Hence, in the Solution for Covert Channel section, we

have proposed the solution for scenario three and scenario 4.

International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

445

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

2.2 Unauthorized Access Outside the System

In RDRTDBS, the replication protocol maintains replica consistency. Replication protocol

propagates the replica message in between the master site and slave site/ master site such that data

replica consistently reaches to the current state. Since these messages spread in the network in the

form of plain text where attackers or unintended users are present to trap the message, an attacker

or unwanted user can easily read or modify the message content for which an attacker does not

privileges to access the data. Thus, to secure the replica message from such users, it is necessary

to use the security technique in the system. Stenography, hash function technique, and

cryptography technique are an existing security technique of network security that secures the

message communicating int the network. In the stenography technique, the image holds the

information, and the sender propagates such an image in the system. The receiver receives such an

image and dislodges original data from the image. Cryptography technique converts the original

data into an

unreadable format such that unintended user is unable to retrieve the original data (Das S. et al.,

2011; Forouzan, B.A., 2007; Li X. et al., 2008; Santhi, B. et al., 2012).

The cryptography technique uses a key and encryption/decryption algorithm to encrypt the

original message into an unreadable format. An encrypted message propagates in the network

such that unauthorized user is unable to retrieve the original message. In contrast, the receiver

decrypts the encrypted message and recovers the original information to process in the system.

Both encryption and decryption algorithms handle the substitution and transposition technique on

the original message to convert into an unreadable format. Substitution replaces each letter of the

message with a new letter, whereas transposition interchanges the position of each letter. These

techniques take the input of the key and original message which is provided by the user. In the

encryption/decryption algorithm, a smaller key is easily crackable, whereas the key with the

bigger size is more challenging to crack. Thus, in cryptography, the key is being securely shared

between the sender and receiver (Shrivastava P. et al., 2014).

In cryptography, the encryption algorithm is given by,

CT = E(KEY, PT) (1)

whereas the decryption algorithm is given by,

PT = D(KEY, CT) (2)

In equations 1 and 2, CT stands for ciphertext, E stands for the encryption algorithm, D stands for

decryption algorithm. And PT stands for plain text.

To improve the security of the message propagating in the network of RDRTDBS, we use the

cryptography technique which converts our replica message spreading in the system in an

unreadable form such that unintended user is unable to retrieve the original message.

3 Solution for Open Factors

As already mentioned, embedding security policy in RDRTDBS is the most challenging issue.

There exist different factors that create difficulty in simultaneously satisfying the timeliness,

mutual consistency, and security. In this section, we have proposed the solution for such identified

factors.

 International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

446

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

3.1 Solution for Database Kernel Code Extendibility

As already mentioned, extending the database kernel with new code is very rigorous in the

RDRTDBS. Since replica management and concurrency control, replica management, and commit

protocol is related to each other, modification conducted in the concurrency control or commit

protocol will impact the performance of replica management. To reduce such impact, we use the

middleware (Shrivastava, P. & Shanker U., 2018a) that shifted a load of replica management from

the database kernel to the external location. This existing middleware consists of three sub-layers

named as data analyzer, conflict detection & correction, and propagation. The data analyzer

decomposes the admitted RTT into set operands and operations. This set is forward to the conflict

sublayer, which checks the conflict between existing RTT and newly admitted RTT. Conflict

detection & correction then schedules the RTT and forward for propagation in the network via the

propagation sublayer. The propagation sublayer broadcasts the write/update RTT and unicasts the

read RTT to the master site and slave site, respectively.

This middleware isolates the location for RTTs processing in different sites. Write/update RTTs

are processed in the master site, whereas the slave site process read RTTs. This isolation

eventually increases the performance in terms of transaction miss ratio (TMR). The authors are

requested to

read the paper (Shrivastava, P. & Shanker U., 2018a) to get more detail. Figure 1 shows the block

diagram of the existing middleware.

Figure 1. Existing Middleware

In Figure 1, S1, S2, and Sn represented the slave sites. Slave site processes only read RTTs. M1,

M2, and Mn represent master sites. Master processes only write and update RTT to update the

value of real-time and non-real time data item. C1, C2, and Cn represent clients. Clients are the

real service users who submit the request to the master/slave site and receive the response from

such a site. Middleware is the interface between master and client.

3.2 Solution for Covert Channel

As already mentioned in our previous section, the covert channel possesses the indirect flow of

information between low clearance level RTT and high clearance level RTT. To prevent the

occurrence of such channels in the RDRTDBS, we have updated the middleware (Shrivastava, P.

& Shanker U., 2018a) with security policy. This sublayer assigns the deadline, priority, clearance

International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

447

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

level, and process the appropriate measure to satisfy the timeliness, mutual consistency, and

security. Figure 2 shows an updated version of the middleware with a security mechanism.

Figure 2. Updated Middleware With Security Constraint

The existing paper (Shrivastava, P. & Shanker U., 2018a) contains the description of data analyzer

and propagation. However, the description of the security & conflict detection sublayer and the

code working in this sublayer is as follows.

3.2.1 Security & Conflict Detection Sublayer

Primarily, based on the RTT requirement, this sublayer assigns the deadline, priority, and

clearance level. After processing initial work, the conflict is checked between admitted RTT and

existing RTT, and based on the conflict, appropriate conflict resolution gets initiated such that

timeliness, mutual consistency, and security get satisfied. The necessary measure means

scheduling the RTT in such a way that all system requirement remains satisfied. This scheduled

RTT is then carry over to the propagation sublayer. Propagation sublayer broadcast or unicast the

RTT. This broadcasting or unicasting will depend on the RTT type.

According to the earliest deadline policy in a non-overload environment of RDRTDBS, priority

assignment to an admitted RTT is inversely proportional to its deadline. That means, RTT with the

most rapid period, will be assigned the highest priority. Thus, in our system, the most top priority

is attached to the earliest deadline RTT and the lowest priority to long-duration RTT. This

assignment policy satisfies the timeliness demand of RDRTDBS. The deadline assignment and

priority assignment (Ulusoy, Ö., 1994) for RTT is as follows.

DL=AT+ST*RT (3)

In equation 3, DL stands for the deadline, AT stands for arrival time, ST stands for slack factor

value, and RT stands for resource time.

Similarly, the priority assignment for admitted RTT is as follows.

P=C/ (PET-S) (4)

In equation 4, C represents criticalness, S represents slack value, and PET represents process

execution time. PET consists of t1, t2, and t3. In PET, t1 stands for priority assignment delay, t2

stands for processing delay, and t3 stands for I/O delay. The equation for PET is as follows.

 International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

448

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

PET=t1+t2+t3 (5)

The assignment of security level to an admitted RTT will depend on the RTT requirement. Zero

value corresponds to the low clearance level, and the highest non-zero value corresponds to the

highest clearance level.

3.2.2 Measure for Preventing Covert Channel

As already mentioned, in our subsection (i.e., Covert Channel Inside the System) of Security

Model that satisfying timeliness, security with mutual consistency in scenarios 1,2,5,6,7,8, and 9

is not a big issue. However, adequate protection with real-time requirements in scenarios 4 and 5

is the most challenging issue. This challenge possesses because of a trade-off between security

and timeliness in the DRTDBS. Thus, in the existing system (Ahmed Q.N. & Vrbsky, S.V., 1998;

Andler, S.F. et al., 1996; David, R. 1995; George B. & Haritsa, J., 1997; George B. & Haritsa, J.R.

2000; Park, C. & Park, S., 1996; Son S.H., 1997; Yingyuan X., 2006), the scheduler may opt for

either security or timeliness to maintain either the security or timeliness.

To solve such a trade-off in RDRTDBS, our updated system model is most helpful. Our updated

system model consists of master sites, slave sites, middleware, and clients. A Middleware prepares

a standard

schedule for all master sites and a usual plan for all slave sites. A schedule prepared for the master

site consists of the only write and update RTTs, whereas a schedule ready for the slave site

consists of only read RTTs. Since write and update the RTT process on non-real time and real-

time data items, respectively, the occurrence of conflict is NIL. Hence, in the master site, it is not

necessary to check the security and conflict in between update and write RTTs, and these RTTs

are scheduled based on their priority value.

In our updated system model, read RTT processes in the slave site. In the slave site, read RTT

possesses a shared lock to process on the data item. A shared lock simultaneously allows the

number of RTTs to handle the same data item. Thus, the number of read RTTs process on the

required data item without checking the conflict and security level. Hence, security and timeliness

demands get satisfied in the RDRTDBS. However, during RTT processing in the slave site,

mutual consistency gets compromised in favor of timeliness and security. This trade-off occurs

because RTT updating real-time and non-real time data item is assigned a low priority. Thus, in

our updated system model, there is a trade-off between mutual consistency and

timeliness/security.

Let us consider a scenario of RDRTDBS where the system possesses N number of RTTs. These

RTTs set consist of different types of RTTs, such as update RTT, write RTT, and read RTT. Later,

a new RTT is admitted in the system, then how our update system model processes the newly

admitted RTT is as follows.

For simple understanding, we consider two instant T1 and T2. At time instant T1, we consider

some RTTs are processing in our system. At time instant T2, a new RTT is admitted to our

system. For this newly admitted RTT, how our middleware operates is as follows.

1) As already mentioned, at time instant t1, we consider only 4 RTTs exist in our system.

These RTTs are TU1, TU2, TW1, and TW2 where TU1 and TU2 represent the update RTTs and

TW1, TW2 represents the write RTT. The set of operations of these RTTs is as follows.

International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

449

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

TU1 - R(RT1), W(RT1)

TU2 - R(RT2), W(RT2)

TW1 - R(NRT1), W(NRT1)

TW2 - R(NRT2), W(NRT2)

These RTTs possess the priority PU1, PU2, PW1, PW2, where PU1 > PW1 > PW1 > PU2. The

clearance level for these RTTs is LU1, LU2, LW1, LW2 and LU1 > LU2 > LW1 > LW2. Since

these RTTs process on different data items, the issue for not satisfying security and timeliness

does not occur in the system. Hence, EDF is used to schedule the TU1, TW1, TW2, TU2.

2) Now, consider that at time instant t2 RTT is admitted. Thus, how our middleware process

such admitted RTT will depend on the existing RTT type.

T2.1. If update RTT is admitted, then middleware check for priority value and schedule the RTT

based on its priority value (i.e., EDF).

For instance, if TU3 is admitted, then the propagation layer broadcast such accepted RTT to all

the master sites such that all master sites consistently reach to the common state.

T2.2. If write RTT is admitted in the system, then middleware check for priority value and

schedule the RTT based on its priority value (i.e., EDF).

For instance, if TW3 is admitted, then the propagation layer broadcast such admitted RTT to all

the master sites such that all master sites consistently reach to the common state.

T2.3. During the admittance of read RTT, there is a trade-off between timeliness/security and

mutual consistency. Thus, if read RTT is admitted, then middleware checks for data conflict in

between processing RTTs and admitted RTT. If admitted RTT is not conflicted with any

processing RTT, then

such RTT is scheduled via EDF technique such that mutual consistency, timeliness, and security

get satisfied. However, if admitted is conflicted with processing RTT, then admitted RTT might

be scheduled to meet either strict consistency or timeliness and security.

For instance, if TR1 is admitted, then based on user demand, two cases will occur.

Case 1: If user demand for strict consistency criteria, then RTT updating real-time and non-real

time data item in the slave site assigned high priority such that read RTT process on the consistent

value and generates consistent value.

Case 2: if user demands for weaker consistency criteria, then RTT updating real-time and non-real

time data item in the slave site assigned lowest priority such that read RTT process on the

inconsistent value and generates inconsistent value.

Thus, during admittance of write RTT and update RTT, it is not necessary to process conflict

detection and clearance level check to satisfy mutual consistency, timeliness, and security. An

EDF is used to schedule RTTs. However, during the admittance of read RTT, the user requirement

is checked. If the user demands strict consistency, then RTT for updating real-time and non-real

time data item in the slave site assigned the highest priority such that timeliness and security get

compromised in favor of mutual consistency. In contrast, if the user demands timeliness and

security, then RTT updating real-time and non-real time data items will be assigned lower priority

in comparison to read RTT such that mutual consistency gets compromised in favor of timeliness

and security.

3.3 Solution for Unauthorized Access

Enforcement of security in the system is conducted in two parts: (i) Inside and (ii) Outside. Inside

security is necessary to prevent the covert channel such that low clearance level RTT neither gets

delayed nor its data value gets changed by the high clearance level RTT. However, enforcing

security from the outside is more challenging than inside. Since in the outside, the location of the

 International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

450

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

unauthorized user is unknown, and such users can attack the system from any side. Thus,

enforcement of security from outside the system is most challenging than inside in the

RDRTDBS. In the present paper, we use the cryptography technique to secure the message

propagating in the network.

In cryptography, the security of the message propagating in the network partially depends on the

encryption/decryption algorithm and partly depends on the key. An algorithm is publicly

available;

however, the key is being secret and is known to only sender and receiver. However, the key is

made confidential and is known to only the sender/receiver. This key exists in the form of

alphanumeric code. This form can be easily remembered and can be easily leaked by the receiver

or sender. To secure the message from such a leak, we use the key generation algorithm

(Shrivastava, P. et al. 2014). The crucial existing generation algorithm uses the 2D image to

generate the key. The main advantage of this proposed work is that the sender or receiver does not

need to remember the core in mind. The algorithm makes this key. Hence, the point of cheating

that the sender has leaked the key or receiver has leaked the key does not arise. However, in the

present paper, we use the audio clip to input in the key generation algorithm and generate the key.

Audio clip in more secure then images because the image can be easily identified and easy to

remember in mind. However, audio cannot be easily visualized; thus, in the present paper, we use

an audio file to generate the key.

3.3.1 Key Generation Algorithm

The key generation algorithm takes the input of an audio file in the Wav format and converts the

audio file into a byte array. From this byte array, byte values are retrieved from the prime number

of locations. These location values are XORed to generate the key value. This key value is shared

among middleware, master site, slave site, using asymmetric key cryptography. In RDRTDBS,

different participants use the same shared key to encrypt and decrypt the admitted RTT and

response. The steps to generate the key is given by,

STEP 1- User record the audio in the WAV format

STEP 2- The recorded sound is converted into a byte array.

STEP 3- Byte value from the prime number locations is retrieved.

STEP 4- These values are XORed into a single value.

STEP 5- The encryption/decryption algorithm uses a single

 Value to encrypt and decrypt the message.

Algorithm 1. Key Generation Using Audio File.

Generated key value is given by,

KV=BV(1) + BV(13) + BV(29) + BV(43) + BV(79) (6)

Where KV stands for key-value, BV (1), BV (13), BV (29), BV (43), and BV (79) holds for byte

value at locations 1, 13, 29, 43, and 79.

3.3.2 Encryption Algorithm

Encryption algorithm encrypts the inputted RTT and forwards to the receiver such that unintended

user is unable to retrieve the original data. In figure 3, the user inputs an audio and an RTT in the

system. Inputted audio is forward to the key generation algorithm. This algorithm generates the

key from the sound and forwards the generated key value to the encryption algorithm. A generated

key value is hidden from the user. Thus, point for cheating that key value is a leak by the sender or

receiver does not arise in the system. A Generated key value and a user admitted RTT is forward

International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

451

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

to the encryption algorithm to encrypt the RTT and forward the encrypted message to the

middleware. Since admitted RTT is encrypted from the user site, the unauthorized user is unable

to retrieve the original message in the network. In addition to this, the user transfers the generated

key to the middleware, master site, and slave site using asymmetric cryptography such that all

sites utilize the key value to encrypt and decrypt the message.

The Middleware receives the encrypted message and key-value from the user. Decrypt the

received RTT using the key-value provided by the user. Process the RTT in each sublayer, encrypt

the message and forward it to the master/slave site. Master site decrypts the receive

encrypted RTT, process the decrypted text in the system, and revert the response in encrypted

form to the user. Similarly, if the admitted RTT is read RTT, then the master site forwards the

encrypted RTT to the slave site for processing. The slave site decrypts the received RTT, process

the decrypted text in the system, and revert the result in the encrypted form to the user. Overall,

during communication between user and middleware, middleware and master site, master, and

slave site is conducted in an encrypted format.

Figure 3. Encryption Algorithm

3.3.3 Decryption Algorithm

The decryption algorithm decrypts the encrypted RTT and forwards it to the receiver such that the

user can retrieve the original data. In figure 4, the encrypted response is received from the master

and slave site via the middleware. The user passes the recorded audio to the key generation

algorithm to generate the key. Generated key and encrypted message is a pass to the decryption

algorithm to decrypt the message to retrieve the original response.

To secure the RDRTDBS from the outside, our proposed encryption algorithm, decryption

algorithm, and key generation algorithm interactively process together to save the system from

massive loss.

Figure 4. Decryption Algorithm

 International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

452

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

4 Experimental Setting & Result

In this section, we have primarily presented the experimental setting and secondary a preliminary

result. To measure the performance of our proposed solutions, we have implemented our proposed

solutions in the java programming language and compared the effect with an existing solution

(Srivastava, A. & Shankar, U.; Xiong M. et al. 2002) of RDRTDBS. Both replication protocols

use lock techniques to allows the processing and waiting of RTTs. Lock manager present in the

lock technique permit only single RTT to process and remaining RTTs to wait in the waiting

queue. Thus, the probability of an occurrence of inconsistency between data items is NIL. Our

updated system model also uses lock technique, which allows the processing of only single RTT

and remaining RTTs to wait until the lock manager grants the lock for processing on the data item.

During experiment conduction, we have computed the cost of various parameters and based on the

result. We can argue that our proposed security solution is beneficial for RDRTDBS.

4.1 Experimental Setting

Simulating settings consist of designing an experimental model and conducting experimentation

on such a model. In the present paper, we have developed the empirical model in the java

programming language. The java programming language is platform-independent and consists of

a rich library that provides us massive support in designing the experimental model. The Netbeans

IDE is used to write the java code because it is freely available and offers enormous support for

database connectivity, cloud connectivity, and soon.

In our updated system model, replication logic is embedded in the middleware. Hence, the central

role is played by the middleware in the experimental model. This middleware is implemented in

the java language and placed in a separate system. The middleware takes the encrypted RTT from

the user, decrypts the RTT, processes in each sublayer, encrypt the processed RTT, and forward it

to the master site (i.e., database). Similarly, when the master site process the admitted RTT,

encrypt the response, transmits the encrypted response to the middleware, middleware forward the

encrypted response to the user. The user decrypts the response and retrieves the original message.

In the experimental model, we have created two master sites and two slave sites for each master

site.

4.1.1 Performance Metric for Covert Channel

The computation cost for the covert channel is represented by the performance metrics such as the

slave security metric, master security metric, and average security metric.

1) Slave Security Metric- This metric is used to calculate the number of read RTTs completed

in their deadline with following security constraints. The slave security metric is given by,

SSM=TNRS / TNRR (7)

Where SSM stands slave security metric, TNRS stands for the number of read RTTs completed in

their deadline with following security constraint, and TNRR stands for the total number of read

RTTs admitted in the system.

2) Master Security Metric-This metric is used to calculate the number of write/update RTTs

completed in their deadline with following security constraint.

MSM=TNS / TNUWR (8)

Where MSM stands master security metric, TNS stands for the number of write/update RTTs

completed in their deadline with following security constraint, and TNUWR stands for the total

number of write/update RTTs admitted in the system.

International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

453

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

3) Average Security Metric- This metric is calculated by the middleware from the data

collected by all master sites.

ASM=(MS1+MS2+...+MSn)/TNMS (9)

MS1, MS2, ..., MSn stands for master site1, master site2, ..., master site n. TNSM stands for the

total number of master sites.

4.1.2 Performance Metric for Covert Channel

The Performance metric for cryptography is represented in terms of encryption time, decryption

time, the throughput of encryption, throughput of decryption, diffusion analysis, CPU process

time, and CPU clock cycles, power consumption and memory utilization (Mr.B.Bharathi et al.,

2017)

1) Encryption time- This metric is used to calculate the time elapsed in converting the plain

text into ciphertext.

ET=SR/TE2-TE1 (10)

Where ET stands for the encryption time, SR stands for the size of admitted RTT, TE1, and TE2

represent the time instance where and TE2>TE1. Encryption of admitted RTT is initialized at time

instant TE1 and at TE2 encryption of RTT get completed. Thus, TE2-TE1 represents the CPU

cycles invested in converting admitted RTT into ciphertext.

2) Decryption time- This metric is used to calculate the time elapsed in converting the

ciphertext into plain text.

DT=DR/TD2-TD1 (11)

Where DT stands for the decryption time, DR stands for the size of encrypted RTT, TD1, and

TD2 represent the time instance and TD2>TD1. The decryption of ciphertext is initialized at time

instant TD1, and TD2 decryption of ciphertext gets completed. Thus, TD2-TD1 represents the

CPU cycles invested in converting cipher text into plain text.

3) Throughput of encryption- The performance of the encryption algorithm depends on the

encryption time. It represents the rate of encryption (Naveen Kolhe, N.R., 2013) and is indirectly

related to the power consumption of the system. An increase in throughput decreases the power

consumption of the system. Similarly, a decrease in throughput increases the power consumption

of the system.

THE=SET/ET (12)

Where THE is the throughput of encryption, SET stands for the size of encrypted RTT, and ET

stands for the encryption time.

4) Throughput of decryption- The throughput of the decryption algorithm depends on the

decryption time. It represents the rate of decryption and is indirectly related to the power

consumption of the system. An increase in throughput decreases the power consumption of the

system. Similarly, a decrease in throughput increases the power consumption of the system.

THD=SDT/DT (13)

 International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

454

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Where THD is the throughput of decryption, SDT stands for the size of decrypted RTT, and DT

stands for the decryption time.

5) CPU process time- This metric is used to calculate the dedicated CPU time invested in the

encryption or decryption of admitted RTT.

CPT=BCE*NCI (14)

Where CPT stands for CPU processing time, BCE stands for essential cost of encryption time, and

NCI stands for the total number of clock cycles.

4.1.2 Performance Metric for Admitted RTT

However, the Performance metric for admitted RTT is different and is represented by the restart

ratio, average miss ratio, and transaction miss ratio.

1) Restart ratio - This metric calculates the number of RTTs restarted from the total number

of RTTs.

RR=NRR/TNR

Where RR stands for restart ratio, NRR stands for the number of RTTs restarted due to data

conflict, and TNR stands for the total number of RTTs admitted in the system for service.

2) Transaction miss ratio.

TMR=TNSR/TNR

Where TNSR stands for the number of RTTs successfully completed within their deadline, and

TNR stands for the total number of admitted RTTs.

In addition to this performance metric, the general setting and user workload setting is given by,

Table 10. System and User Setting

 Parameter Value

DB_Sz 100

CPU_Tm 5 msec

WR_Pb 0.5

Max_ASL 5

Ar_Rt [2,100]

Txn_Sz [100B, 1KB]

Log_Dy 5 msec

Rs_Dy 5 msec

Min_Sk 2

Max_Sk 10

In Table 10, the number of data pages and processing time on each data page is represented by

DB_Sz and CPU_Tm, respectively. WR_Pb represents the probability of update or write

operation. Max_ASL represents the security access level for each RTT. Ar_Rt represents the

number of RTT admitted in the system for service and ranges from 2 to 100. Txn_Rt represents

the average RTT size, and its value is 10. Rs_Dy and Log_Dy, respectively, represent overhead

form restart and log access. Slack factor value is used for each RTT and its minimum amount, and

the maximum value is represented by Min_Sk and Max_Sk respectively.

International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

455

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

4.2 Experimental Result

To compute the cost for maintaining security in the RDRTDBS, we have conducted the simulation

more than ten times. In most of the experiments, we have to change the user setting and collect the

result. From the result, we got the confidence that our proposed solution prevents unauthorized

access from inside and outside the system.

The collected result during experimentation for the covert channel admitted RTT and

unauthorized access is shown in subsection 1, 2, and 3, respectively.

4.2.1 Computation Cost For Maintaining Inside Security

During experiment conduction, we have varied the arrival rate for update/write/read RTT and

admit them in the middleware. The Middleware process the admitted RTT and broadcast or

unicast the RTT to the master site or slave site, respectively.

In the slave site, the arrival rate for read RTT gets varied and ranges from 2 to 100. The slave site

uses a shared lock for the processing of more than one RTTs on the same item. The factor such as

delay security, value security, and recovery security responsible for the occurrence of the covert

channel does not occur in the slave site. Although the slave site prevents the presence of the covert

channel, there is a trade-off between timeliness, security, or mutual consistency. If the user

demands timeliness and security, then mutual consistency gets compromised. Figure 5 shows the

experimental result for following weaker consistency criteria. On the other demand, If the user

demands strict consistency, then timeliness and security get compromised in favor of mutual

consistency. Figure 6 shows the experimental result for the strict consistency criteria.

Figure 5. Slave Site Security Under Weaker Consistency Criteria

 International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

456

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Figure 6. Slave Site Security Under Strict Consistency Criteria

In our updated system model, master site processes write and update RTT. Write and update RTT

processes on the different data items. Hence, the occurrence of data conflict between write RTT

and update RTT is NIL. Due to the non-occurrence of data conflict, RTT neither suffers from the

issue of delay security, value security, and recovery security. Hence, in master site covert channel

occurrence, neither occurs. Figure 6 shows the experimental result for the secret channel in the

master site.

Figure 7. Master Site Security

Since in our updated system model, middleware is the central processing location for all types of

RTTs. It periodically collects the performance data from all master sites and calculates the average

security metric. The security metric of individual master sites shows promising performance, and

the computed cost from the security metrics of all master sites also shows promising results.

International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

457

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Figure 8 . Slave Site Security Under Strict Consistency Criteria

4.2.2 Performance Metric for Admitted RTT

Despite estimating security performance, computation cost for the admitted RTTs is measured via

restart ratio, and TMR. Restart ratio measures the number of RTTs restarted from the total number

of admitted RTTs. TMR estimates the number of RTTs misses their deadline due to the

occurrence of data conflict or lack of CPU cycles.

To measure the restart ratio, we have admitted the different types of RTTs in our updated system

model. From the collected result, we found that in the master site RTTs are restarted because of

lack of CPU cycles whereas in the slave site RTTs are restarted because of a trade-off between

mutual consistency and timeliness/security. The recorded result for the restart ratio in the master

side is shown in figure 9.

Figure 9. Master Site Restart Ratio

However, in the slave site, if strict consistency is required, then timeliness and security get

compromised. Fig.10 shows the experimental result for following strict consistency criteria. On

the other hand, if the user demands weaker consistency, then timeliness and security get satisfied.

Fig. 11. shows the experimental result for following weaker consistency.

 International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

458

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Figure 10. Slave Site Restart Ratio Under Strict Consistency

Figure 11. Slave Site Restart Ratio Under Weaker Consistency

4.2.3 Computation Cost For Maintaining Outside Security

In this subsection, we have presented the result collected from the experiment conducted for

outside security in our updated system model. The Experimental result is represented in the form

of encryption time, encryption throughput, decryption time, decryption throughput, CPU process

time, and memory utilization. Figure 12 shows the experimental result for encryption time and

decryption time of all RTT, whose size varies from 100 B to 1000 Bytes.

Figure 12. Encryption & Decryption Time

Encryption and decryption throughput is represented in Figure 13.

International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

459

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Figure 13. Encryption & Decryption Throughput

The CPU usage is represented in Figure 14.

Figure 14. CPU Process Time

5 Related Work

In this section, research in the replication protocol for RDRTDBS and research in security for

DRTDBS is presented in subsection 1 and 2, respectively.

5.1 Research in Replication Protocol

In the replicated environment of DRTDBS, the majority of researchers have focused on the

development of RPL (Andler S.F. et al., 1996; El-Bakry et al., 2012; Gustavsson S. et al., 2005;

Gustavsson S. et al., 2004; Kim, Y.K., 1996; Mathiason, G. et al. 2007; Peddi, P. et al. 2002; Said

A.H. et al., 2008; Salem R. et al. 2016; Shrivastava, P. & Shanker, U.; Shrivastava P. & Shanker

U., 2018c; Shrivastava P. & Shanker U. 2019a; Shrivastava P. & Shanker U. 2019b; Shrivastava

P. & Shanker U. 2020; Son, S., 1987; Son, S.H. & Kouloumbis S., 1993; Son, S.H. & Zhang, F.

1995; Son S.H. et al., 1996; Srivastava A., &Shankar U.; Syberfeldt, S., 2007; Xiong M. et al.,

2002) such that RTT processed on the consistent value of the replicated database site. Among

such works, research work (Son, S., 1987) exploited the semantic information of read RTT. The

experimental result proves that the efficiency of the system gets increases via using such a

technique. RPL based on a token scheme and an integrated version of RPL with scheduling is

proposed in (Son, S.H. & Kouloumbis, S., 1993; Son, S.H., Zhang, F., 1995), respectively. Both

RPLs follow a weaker correctness criterion (i.e., epsilon serializability) for the processing of

RTTs in different sites. RPL, based on strict correctness criteria (i.e., 1SR) named as MIRROR

(Xiong, M et al. 2002), is an augmented version of O2PL with a novel state-based real-time

conflict resolution mechanism.

Similarly, to provide real-time capabilities for the telecom application, a distributed and parallel

DBMS named ClustRa is proposed in (Kim, Y.K., 1996). However, these RPLs suffers from the

 International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

460

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

issue of an overload condition, unbounded delay, and deadlock. RPL for distributed real-time

object

oriented database system is presented in (Peddi, P. & DiPippo, L.C., 2002) and is suited for a

static environment.

However, this RPL is not suitable for a dynamic environment where the request is active. In

RDRTDBS, conflict detection and correction policy play an essential role in maintaining mutual

consistency. Thus, RPL (Gustavsson, S. & Andler, S.F., 2004) conducts continuous conflict

detection and correction using the conflict set. This RPL also suffers from the issue of strict

consistency criteria. Continuous convergence protocol (Gustavsson, S. & Andler, S., 2005) for

DRTDBS concentrates on three main terms (i) local predictability, (ii) local consistency, and (iii)

eventual global consistency. However, in such protocol inconsistency for read RTT has to be

tolerated. An RPL based on an optimistic approach with deterministic detection and forward

resolution of conflicts is proposed in (Syberfeldt, S., 2007). This RPL is known as PRiDe and

primarily focuses on maintaining mutual consistency of real-time data items, but RPL (Said, A.H

et al. 2008) focuses on maintaining mutual consistency of non-real time data item. The simulator

proposed in (El-Bakry et al. 2008) examines the performance of RPLs. Virtual full replication

based on adaptive segmentation (Mathiason, G. et al. 2007) resolves the severe drawbacks of full

replication, but such an approach also suffers from overloading issues. Recently, the middleware-

based replica control technique (MBRCT) following 1SR is proposed in (Shrivastava, P., Shanker,

U., 2018a) for increasing the performance and scalability.

5.2 Research in Security for DRTDBS

In the research article (Son, S.H. & Thuraisingham, B., 1993), the author has reported different

issues to solve the trade-off between timeliness and security. Partial violation of security is

presented in (David, R. et al. 1995), and an extended version of this approach with the adaptive

policy is proposed in (Son S.H., 1997). Another solution based on multiple version techniques to

solve the trade-off is reported in (Park, C. & Park, S., 1996). An integrated approach to address

inter and intra level conflict is proposed in (George, B. & Haritsa, J., 1997). Optimistic

concurrency control with security constraint for DRTDBS in introduced in (Ahmed, Q.N. &

Vrbsky, S.V., 1998.). SABRE (secure algorithm for buffering in real-time environments)

(George, B. & Haritsa, J.R., 2000) provides covert channel free security. A new concurrency

control protocol named ROT-FREEZE (Han H. et al., 2000) improves the performance for read

RTT. Optimistic based concurrency control protocol (Yingyuan X. et al. 2006) has proposed two

factors: (i) secure influence factor and (ii) real-time influence factor. These factors solve the trade-

off between security and timeliness. Recently, Ebrahim Abduljalil et al. has published paper

(Ebrahim Abduljalil, D., 2017), that details about multi security models in a real-time database.

6 Conclusion

The main requirement for DRTDBS is timeliness and temporal consistency. This requirement

becomes more complicated in the presence of various non-deterministic factors such as distributed

processing, the existence of single version data objects, access latency, and limitation of system

memory. The replication technique extricates the issue for distributed processing and the presence

of individual version data objects. A Replication technique easily meets the timeliness demand by

creating the same data replica in different locations. The major challenging issue in the replication

technique is the satisfaction of replica consistency. Existing researches have been mainly

conducted on maintaining replica consistency for RDRTDBS. These researches suffer from the

issue of the covert channel, unauthorized access outside the system, and limitation of kernel code

extendibility. The solution for limitation of kernel code extendibility is already proposed in

(Shrivastava, P., Shanker, U., 2018a), and we have embedded the solution for covert channel and

unauthorized access in these solutions such that the occurrence of the secret channel and

International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

461

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

unauthorized access get prevented in the system. The performance of our proposed solution is

implemented in java programming and tested with other non-secure replication protocol. From the

collected result, we can argue that our proposed solution for inside and outside security in the

RDRTDBS prevents the unauthorized access inside as well as outside the system. Our proposed

solution is beneficial for real-time application, which demands performance and safety.

References

1. Ahmed, Q.N., Vrbsky, S.V., 1998. Maintaining security in firm real-time database systems,

in: Proceedings 14th Annual Computer Security Applications Conference (Cat. No. 98EX217),

IEEE. pp. 83–90.

2. Andler, S.F., Hansson, J., Eriksson, J., Mellin, J., Berndtsson, M., Eftring, B., 1996. Deeds

towards a distributed and active real-time database system. ACM Sigmod Record 25, 38–51.

3. Bell, D.E., LaPadula, L.J., 1973. Secure computer systems: Mathematical foundations.

Technical Report. MITRE CORP BEDFORD MA.

4. Breitbart, Y., Korth, H.F., 1997. Replication and consistency: Being lazy helps sometimes,

in: Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

database systems, pp. 173–184.

5. Das, S., Das, S., Bandyopadhyay, B., Sanyal, S., 2011. Steganography and steganalysis:

different approaches. arXiv preprint arXiv:1111.3758.

6. David, R., Son, S.H., Mukkamala, R., 1995. Supporting security requirements in multilevel

real-time databases, in Proceedings 1995 IEEE Symposium on Security and Privacy, IEEE. pp.

199–210.

7. Ebrahim Abduljalil, D., 2017. Multilevel security models in real-time database systems:

Comparing and analyzing — International Journal Of Engineering And Computer Science 6.

8. El-Bakry, H.M., Sultan, T., et al., 2012. Design of replicated real-time database simulator,

in Proceedings of the 6th WSEAS International Conference on Computer Engineering and

Applications, and Proceedings of the 2012 American conference on Applied Mathematics. World

Scientific and Engineering Academy and Society (WSEAS).

9. Elmasri, R., 2008. Fundamentals of database systems. Pearson Education, India.

10. Forouzan, B.A., 2007. Cryptography & network security. McGrawHill, Inc.

11. Garcia-Molina, H., Lindsay, B., 1990. Research directions for distributed databases. ACM

SIGMOD Record 19, 98–103.

12. George, B., Haritsa, J., 1997. Secure transaction processing in firm real-time database

systems. ACM SIGMOD Record 26, 462–473.

13. George, B., Haritsa, J.R., 2000. Secure buffering in firm real-time database systems. The

VLDB Journal 8, 178–198.

14. Ginis, R., Wolfe, V.F., 1998. Issues in designing open distributed realtime databases, in

Proceedings of the 4th international workshop on Parallel and Distributed Real-Time Systems,

IEEE. pp. 106–109.

 International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

462

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

15. Gustavsson, S., Andler, S., 2005. Continuous consistency management in distributed real-

time databases with multiple writers of replicated data in 19th IEEE International Parallel and

Distributed Processing Symposium, IEEE. pp. 8–pp.

16. Gustavsson, S., Andler, S.F., 2004. Real-time conflict management in replicated databases,

in: Proceedings of the Fourth Conference for the Promotion of Research in IT at New Universities

and University Colleges in Sweden (PROMOTE IT 2004), Karlstad, Sweden, pp. 504–513.

17. Han, H., Park, S., Park, C., 2000. A concurrency control protocol for read-only transactions

in real-time secure database systems, in Proceedings Seventh International Conference on Real-

Time Computing Systems and Applications, IEEE. pp. 458–462.

18. Kao, B., Garcia-Molina, H., 1994. An overview of real-time database systems, in Real-

Time Computing. Springer, pp. 261–282.

19. Kim, Y.K., 1996. Towards real-time performance in a scalable, continuously available

telecom DBMS.

20. Li, X., Wu, X., Qi, N., Wang, K., 2008. A novel cryptographic algorithm based on iris

feature, in 2008 International Conference on Computational Intelligence and Security, IEEE. pp.

463–466.

21. Mathiason, G., Andler, S.F., Son, S.H., 2007. Virtual full replication by adaptive

segmentation, in the 13th IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA 2007), IEEE. pp. 327–336.

22. Mr.B.Bharathi, Mr.G.Manivasagam, D.K., 2017. Metrics for performance evaluation of

encryption algorithms. International Journal of Advance Research in Science and Engineering 6,

62–72.

23. Naveen Kolhe, N.R., 2013. Throughput comparison results of proposed algorithm with

existing algorithm. The International Journal Of Engineering And Science (IJES) 2, 92–98.

24. Park, C., Park, S., 1996. A multiversion locking protocol for real-time databases with

multilevel security, in Proceedings of 3rd InternationalWorkshop on Real-Time Computing

Systems and Applications, IEEE. pp. 136–143.

25. Peddi, P., DiPippo, L.C., 2002. A replication strategy for distributed real-time object-

oriented databases, in Proceedings Fifth IEEE International Symposium on Object-Oriented Real-

Time Distributed Computing. ISIRC 2002, IEEE. pp. 129–136.

26. Said, A.H., Sadeg, B., Amanton, L., el Ayeb, B., 2008. A protocol to control replication in

distributed real-time database systems., in ICEIS (1), pp. 501–504.

27. Salem, R., Abdul-Kader, H., et al., 2016. Scalable data-oriented replication with flexible

consistency in real-time data systems. Data Science Journal 15.

28. Santhi, B., Ravichandran, K., Arun, A., Chakkarapani, L., 2012. A novel cryptographic key

generation method using image features. Research Journal of Information Technology 4, 88–92.

29. Shanker, U., Misra, M., Sarje, A.K., 2008. Distributed real-time database systems:

background and literature review. Distributed and parallel databases 23, 127–149.

International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

463

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

30. Shrivastava, P., Jain, R., Raghuwanshi, K., 2014. A modified approach of key

manipulation in cryptography using 2d graphics image, in 2014 International Conference on

Electronic Systems, Signal Processing, and Computing Technologies, IEEE. pp. 194–197.

31. Shrivastava, P., Shanker, U.. Predicting processing time of real-time transaction in

replicated drtdbs via middleware.

32. Shrivastava, P., Shanker, U., 2018a. Replica control following 1sr in drtdbs through best

case of transaction execution, in Advances in Data and Information Sciences. Springer, pp. 139–

150.

33. Shrivastava, P., Shanker, U., 2018b. Replica update technique in rdrtdbs: issues &

challenges, in Proceedings of the 24th International Conference on Advanced Computing and

Communications (ADCOM-2018), Ph. D. Forum, Bangalore, India, pp. 21–23.

34. Shrivastava, P., Shanker, U., 2018c. Replication protocol based on dynamic versioning of

data object for replicated drtdbs. International Journal of Computational Intelligence & IoT 1.

35. Shrivastava, P., Shanker, U., 2019a. Real-time transaction management in replicated

drtdbs, in Australasian Database Conference, Springer. pp. 91–103.

36. Shrivastava, P., Shanker, U., 2019b. Supporting transaction predictability in replicated

drtdbs, in International Conference on Distributed Computing and Internet Technology, Springer.

pp. 125–140.

37. Shrivastava, P., Shanker, U., 2020. Secure system model for replicated drtdbs, in Security

and Privacy Issues in Sensor Networks and IoT. IGI Global, pp. 264–281.

38. Son, S., 1987. Using replication for high performance database support in distributed real-

time systems.

39. Son, S.H., 1997. Supporting timeliness and security in real-time database systems, in

Proceedings Ninth Euromicro Workshop on Real-Time Systems, IEEE. pp. 266–273.

40. Son, S.H., Kouloumbis, S., 1993. A token-based synchronization scheme for distributed

real-time databases. Information Systems 18, 375–389.

41. Son, S.H., Thuraisingham, B., 1993. Towards a multilevel secure database management

system for real-time applications, in: [1993] Proceedings of the IEEE Workshop on Real-Time

Applications, IEEE. pp. 131–135.

42. Son, S.H., Zhang, F., 1995. Real-time replication control for distributed database systems:

Algorithms and their performance., in DASFAA, pp. 214–221.

43. Son, S.H., Zhang, F., Hwang, B., 1996. Concurrency control for replicated data in

distributed real-time systems. Journal of Database Management (JDM) 7, 12–23.

44. Srivastava, A., Shankar, U., Ccrtrd: A protocol for concurrency control in real-time

replicated databases system.

45. Syberfeldt, S., 2007. Optimistic replication with forward conflict resolution in distributed

real-time databases. Ph.D. thesis. Institutionen för datavetenskap.

46. Ulusoy, Ö., 1994. Processing real-time transactions in a replicated database system.

Distributed and Parallel Databases 2, 405–436.

 International Journal of Future Generation Communication and Networking
Vol. 13, No. 2, (2020), pp. 439 – 464

464

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

47. Ulusoy, Ö., 1995a. Research issues in real-time database systems: survey paper.

Information Sciences 87, 123–151.

48. Ulusoy, Ö., 1995b. A study of two transaction-processing architectures for distributed real-

time database systems. Journal of Systems and Software 31, 97–108.

49. Wang, F., Yao, L.W., Yang, Y.L., 2011. Efficient verification of distributed real-time

systems with broadcasting behaviors. Real-Time Systems 47, 285.

50. Xiong, M., Ramamritham, K., Haritsa, J.R., Stankovic, J.A., 2002. Mirror: A state-

conscious concurrency control protocol for replicated real-time databases. Information systems

27, 277–297.

51. Yingyuan, X., Yunsheng, L., Xiangyang, C., 2006. An efficient, secure real-time

concurrency control protocol. Wuhan University Journal of Natural Sciences 11, 1899–1902.

