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Abstract: Spectra of Sierpinski graph defined as eigenvalues of graph at different stage of 

iteration. In this is paper it aimed to found that the choice of matrix representation has a large 

impact, on the suitability of spectrum in a number of pattern recognition tasks, i.e. various 

stages of iteration. 
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Introduction: 

Graph theory is a branch of mathematics started by Euler as early as 1736. A graph 

G consists of sets of vertices V  and a set of edges E  such that each edges is associated with 

an unordered pair of vertices then the graph is known as undirected graph and if each edges 

of graph is associated with an ordered pair of vertices then the graph is called directed graph 

or digraph. Although graphs are frequently stored in a computer as list of vertices and edges, 

they are pictured as diagrams in the plane in a natural way. Vertex set of graph is represented 

as a set of points in a plane and edge is represented by a line segment or an arc (not 

necessarily straight). 

We denote Sierpinski triangle by
 nS  that obtained at the nth stage of the iterative process. 

             

          Step 1: 1S                            Step 2: 2S                Step 3: 3S       

The generalised Sierpinski graph, as per the above definition of the Sierpinski graphs 

).,( knS  The vertex set of ),( knS consists of all −n tuples of the integers (for every 

1and1  kn ) i.e. .},..........3,2,1{)),(( nkknSV =  Two different vertices 

),...,,(and),...,,( 2121 nn vvvvuuuu == are adjacent if and only if there exists an 

},....,2,1{ nh such that 
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In 1736 Euler noticed that the river Pregel flows through the city of Konigsberg dividing the 

city into four land regions of which, two are banks and two are islands and the four land 

regions were connected by 7 bridges. Euler proposed that any given graph can be traversed 

with each edge traversed exactly once if and only if it had, zero or exactly two nodes with 

odd degrees. The graph following this condition is called, Eulerian circuit or path. Exactly 

two nodes are, (and must be) starting and end of your trip. If it has even nodes than we can 

easily come and leave the node without repeating the edge twice or more. Using this theorem, 

we can create and solve number of problems.   

The existence of an Euler path in a graph is directly related to the degrees of the graph’s 

vertices. Euler formulated the following theorems of which the first two set a sufficient and 

necessary condition for the existence of an Euler circuit or path in a graph respectively. 

Theorem 1.2: An undirected graph has at least one Euler path if and only if it is connected 

and has two or zero vertices of odd degree. 

Theorem 1.3: An undirected graph has an Euler circuit if and only if it is connected and has 

zero vertices of odd degree. 

Proposition 1:  Sierpinski’s Gasket has an Euler circuit if and only if it is has two  or  zero 

vertices of odd degree. 

For the case of no odd vertices, the path can begin at any vertex and will end there; for the 

case of two odd vertices, the path must begin at one odd vertex and end at the other. Any 

finite connected graph with two odd vertices is traversable. A traversable trail may begin at 

either odd vertex and will end at the other odd vertex. 

    

 Proposition 2: Sierpinski’s Gasket is Eulerian if and only if its vertices are all of even 

degree. 
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Proof:  

Case 1(Eulerian as shown in figure): Suppose G be a Sierpinski Graph is Eulerian, then G 

has an Eulerian trail which begins and ends at “a”. If traverse along the trail then each and 

every time traverse a vertex having two edges. It is necessary condition that starting and 

ending nodes are same and each and every vertices must contain even degree (deg(v)) of 

vertices.   

Case 2( not Eulerian as shown in figure): Suppose G be a Sierpinski Graph is not Eulerian, 

then G has not Eulerian trail which begins at “a1” but does not ends at “a1”. If traverse along 

the trail then each and every time traverse a vertex having two odd vertices or even vertices 

but above figure does not satisfy the Eulerian condition. Since each vertex in the middle of 

the trail is associated with three edges (G can not have just one odd vertex). 

Let 876432  and,,,, aaaaaa be odd vertices in the connected graph G(not Eulerian). If we 

connect the vertices in pair )a,(a and ),(),,( 746382 aaaa then the not Eulerian graph becomes 

the Sierpinski Eulerian. Hence all the vertices become even after connecting the odd vertices. 

 

Eigenvalues of a graph 

Let A be the adjacency matrix of the graph Γ of order N. Let I be the identity matrix of order 

N, and let λ be a scalar. Then the determinant |A−λI| which is an ordinary polynomial in λ of 

N-th degree with scalar coefficients, is called the characteristic polynomial of Γ. The roots of 

the equation |A−λI| = 0 are called the eigenvalues of the graph Γ (also of the matrix A). The 

set of eigenvalues is called the spectrum of the graph Γ. The multiplicity of an eigenvalue λ is 

called the algebraic multiplicity of λ. The equation Au = λu is called an eigenvalue equation. 

A nonzero solution u of the equation is called an eigenvector or eigenfunction for the 

eigenvalue λ. The vector space constructed from the set of eigenvectors corresponding to a 

particular eigenvalue λ is called the eigenspace of λ. The dimension of the eigenspace of an 

eigenvalue λ is the geometric multiplicity of λ. For a symmetric matrix, the geometric and 

algebraic multiplicities of an eigenvalue are equal. 
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Laplacian Matrix:- 

We consider graphs which has no loops or parallel edges, unless stated otherwise. Thus a 

graph ))(),(( GEGVG = , consist of a finite set of vertices, ),(GV and a set of edges, 

),(GE each of whose elements is a pair of distinct vertices. Given a graph, one associates a 

variety of matrices with the graph. Some of the important ones will be defined now. Let G  

be a graph with }.,....,,{)(},,.....,2,1{)( 21 neeeGEnGV == The adjacency matrix )(GA  of G  

is an nn matrix with its rows and columns indexed by )(GV and with the −),( ji entry 

equal to 1 if vertices ji, are adjacent (i.e., joined by an edge) 0(zero) otherwise. Thus 

)(GA is a symmetric matrix with its th−i  row (or column) sum equal to ),(Gd i  which by 

definition is the degree of the vertex i , .,.....,2,1 ni =  Let )(GD denote the nn diagonal 

matrix, th−i diagonal entry is .,.....,2,1),( niGdi =  

 The Laplacian matrix of ,G  denoted by ),(GL is simply the matrix ).()( GAGD −  

Signless Laplacian Matrix:- 

The adjacency matrix )(GA  of G  is an nn matrix with its rows and columns indexed by 

)(GV and with the −),( ji entry equal to 1 if vertices ji, are adjacent (i.e., joined by an edge) 

0(zero) otherwise. Thus )(GA is a symmetric matrix with its th−i  row (or column) sum 

equal to ),(Gd i  which by definition is the degree of the vertex i , .,.....,2,1 ni =  Let 

)(GD denote the nn diagonal matrix, th−i diagonal entry is .,.....,2,1),( niGdi =  

The Signless Laplacian matrix of ,G  denoted by ),(GL is simply the matrix ).()( GAGD +  

Theorem: Let G be a graph on n vertices with vertex degrees nddd ,.....,, 21 and largest Q-

eigenvalue .1q  Then .max2min2 1 ii dqd   For a connected graph G, equality holds in 

either of these in equalities if and only if G is regular. 

Theorem: Let G be a graph on n vertices with vertex degrees nddd ,.....,, 21 and largest Q-

eigenvalue .1q Then ),max()min( 1 jiji ddqdd ++ where (i,j) runs over all pairs of 

adjacent vertices of G. For a connected graph G, equality holds in either of these inequalities 

if and only if G is regular or semi-regular bipartite. 
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Proof: The line graph L(G) of G has largest eigenvalue .21 −q Consider an edge u of G which 

joins vertices i and j. The vertex u of L(G) has degree .2−+ ji dd Hence, 

),2max(2)2min( 1 −+−−+ jiji ddqdd which proves the theorem. 

Lemma: Let )(xp be a given polynomial. If λ is an eigenvalue of A , while x is an associated 

eigenvector, then )(p  is an eigenvalue of the matrix )(Ap and x is an eigenvector 

of )(Ap associated with p(λ). The characteristic polynomial of A is defined by 

)det()( AtItA −=  

Notes: The roots of the characteristic polynomial A are exactly the eigenvalues of A. By the 

Fundamental Theorem of Algebra we know that every polynomial with degree n has exactly 

n complex roots (counted with multiplicities).  

Lemma: Let A be a −nn matrix with eigenvalues .,....,, 21 n Then 


=

=
n

i

iA
1

)(tr   

Lemma: Let A be a symmetric real matrix. Suppose v and w are eigenvectors of A associated 

with the eigenvalues λ and µ respectively. If λ µ then v ⊥ w, i.e. v and w are orthogonal. 

Proposition: The least eigenvalue of the signless Laplacian of a connected graph is equal to 

0 if and only if the graph is bipartite. In this case 0 is a simple eigenvalue.  

Proof: Let ).,......,( 1 n

T xxx = For a non-zero vector x we have Qx=0 if and only if .0=xRT  

The later holds if and only if ji xx −= for every edge, i.e. if and only if G is bipartite. Since 

the graph is connected, x is determined up to a scalar multiple by the value of its coordinate 

corresponding to any fixed vertex i. 

 

Theorem: (Spectral Theorem) Let A be a n×n symmetric real matrix. Then there are n 

pairwise orthogonal (real) eigenvectors vi of A associated with real eigenvalues of A. 

Consider λ1(A) ≤ ... ≤ λn(A) are eigenvalues of a symmetric matrix A. Some of these 

eigenvalues can be equal; we say that those eigenvalues have multiplicity greater than 1. 

Thus we denote the spectrum of A also in the form 
][

2

][

1
21 ,.......,

mm
 , where i  is an 

eigenvalue with multiplicity mi. 
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Theorem: (Rayleigh-Ritz) Let A be an n×n real symmetric matrix, and let λ1 ≤ λ2 ≤ ... ≤ λn be 

the eigenvalues of A. Then 

,maxmax
10

Axx
xx

Axx T

xx
T

T

x
n T =

==  

.minmin
10

1 Axx
xx

Axx T

xx
T

T

x T =
==  

Definiton: (Adjacency eigenvalues) The eigenvalues of A(G) are called the adjacency 

eigenvalues of G. The set of all the adjacency eigenvalues are called the (adjacency) 

spectrum of the graph G. 

Lemma[17,21]: Let G be a graph on n vertices.  

i) The maximum eigenvalue of G lies between the average and the maximum degree of G, i.e.  

. nd   

ii) The range of all the eigenvalues of a graph is   −∆ ≤ λ1 ≤ λ2 ≤ ... ≤ λn ≤ ∆. 

Proof: i) The Rayleigh quotient for some special vector is greater than .d This suffices to get 

the first inequality, because the maximum of the Rayleigh quotient is λn. The other inequality 

in (i) follows from the second point. Set x = (1, 1,..., 1)T. The Rayleigh quotient for this 

vector equals: 

d
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ii) We have to show that the absolute value of every eigenvalue is less than or equal to the 

maximum degree. Let u be an eigenvector corresponding to the eigenvalue λ, and let uj 

denote the entry with the largest absolute value. We have  

( ) .
~~

j

ji

jji

ji

ijjj uuduuAuuu ===   

Thus we have |λ|≤ ∆ as required. 

Definiton: (Laplacian eigenvalues) The eigenvalues of L(G) are called the Laplacian 

eigenvalues. The set of all the Laplacian eigenvalues are called the (Laplacian) spectrum of 

the graph G.  

Lemma[8]: Let G be a graph on n vertices with Laplacian eigenvalues λ1 = 0 ≤ λ2 ≤ ... ≤ λn 

and maximum degree ∆. Then 0 ≤ λi ≤ 2∆ and λn ≥ ∆.  

Proof: All eigenvalues are nonnegative by positive semidefinite matrices. 
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Let u be an eigenvector corresponding to the eigenvalue λ, and let uj denote the entry with the 

largest absolute value. We have  

.22
~~

jjj

ji

ijj

ji

ijjjj uuduuduuduu +−==   

Thus, we have |λ|≤ 2∆ as required. 

Let j be the vertex with maximal degree, i.e. dj = ∆. We define the characteristic vector x:  



 =

=
otherwise.,0

; if,1 ji
xi   

Now, the desired inequality follows: 
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We present the simple way MATLAB coding to generate the adjacency matrix, Laplacian 

matrix and signless Laplacian matrix of Sierpinski graph, hence to find its eigenvalues of 

given graph (i.e. spectrum).  

MATLAB code to generate the matrix representation of a Sierpinski graph and Sierpinski 

Eulerian graph on n vertices: 

%%construct of adjacency matrix on n vertices 
nrows = n; 
ncols = n; 
A = ones(nrows,ncols); 
for c = 1:ncols 
    for r = 1:nrows  

         
        if r == c 
            A(r,c) = 0; 

  A(n,n+1)=1; 
        elseif abs(r-c) == 0 
            A(r,c) = 1; 
        else 
            A(r,c) = 0; 
        end 

         
    end 
end 
A 
%% construct eigenvalue of Sierpinski and Sierpinski Eulerian graph on n 

vertices 
eigenvalueofadjmatrix=eig(A) 
%% create diagonal matrix 
v=[d1 d2 d3 . . . . dn]; 
D=diag(v) 
%% Laplacian matrix of Sierpinski graph and Sierpinski Eulerian graph 
L=D-A 
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%% create eigenvalues of Laplacian matrix of Sierpinski and Sierpinski 

Eulerian graph  on n vertices 
eigenvalueoflapmatrix=eig(L) 
%% signless Laplacian matrix of Sierpinski and Sierpinski Eulerian graph  
L’=D+A 
%% create eigenvalue of signless Laplacian matrix of Sierpinski and 

Sierpinski Eulerian graph on n vertices 
eigenvalueofsiglapmatrix=eig(L’) 
%% graphical comparison between matrix of Sierpinski and Sierpinski 

Eulerian graph on n vertices 
y2 = ['enter all x coordinates']; 
y1 = ['enter all x coordinates']; 
xlabel(y1) 
xlabel(y2) 
plot(y2,'g--*') 
hold;  
plot(y1,'r--*') 

 

Results: 

Spectrum (eigenvalues) of 2nd stage of iteration on 3 vertices (i.e. S(2,3))  round off to 2 

decimal places 

Sierpinski graph Sierpinski Eulerian graph 

Sr. 

No. 

Laplacian 

matrix 

Signless Laplacian 

Matrix 

Laplacian 

matrix 

Signless Laplacian 

Matrix 

1 0.00 1.00 0.00 1 

2 0.70 1.00 1.27 1.27 

3 0.70 1.00 1.27 1.27 

4 3.00 1.44 3.00 1.63 

5 3.00 2.38 4.00 4.00 

6 3.00 2.38 4.00 4.00 

7 4.30 4.62 4.73 4.73 

8 4.30 4.62 4.73 4.73 

9 5.00 5.56 7 7.73 
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Spectrum (eigenvalues) of 3rd stage of iteration on 3 vertices (i.e. S(3,3))  round off to 2 

decimal places 

Sierpinski graph Sierpinski Eulerian graph 

Sr. 

No. 

Laplacian 

matrix 

Signless Laplacian 

Matrix 

Laplacian 

matrix 

Signless Laplacian 

Matrix 

1 0.00 1.00 0 7.87 

2 0.14 1.00 0.33 7.37 

3 0.14 1.00 1.29 5.68 

4 0.70 1.00 6.83 7.42 

5 0.70 1.00 0.30 4.82 

6 0.70 1.00 1.71 3.89 

7 1.10 1.09 5.58 2.43 

8 1.10 1.30 3.05 1.14 

9 1.38 1.30 4.53 1.43 

10 3.00 1.87 4.53 1.36 

11 3.00 1.87 4.14 1.26 

12 3.00 2.20 6.73 1.35 

13 3.00 2.38 1.72 2.40 

14 3.00 2.38 5.72 4.83 

15 3.00 2.38 3.27 4.73 

16 3.62 3.00 4.28 6.00 

17 3.90 3.00 7.00 6.00 

18 3.90 3.00 7.00 1.00 

19 4.30 4.62 2.00 1.00 

20 4.30 4.62 2.00 3.00 

21 4.30 4.62 4.00 3.00 

22 4.86 4.80 4.00 4.00 
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23 4.86 5.12 5.00 4.00 

24 5.00 5.12 5.00 4.00 

25 5.00 5.70 4.00 4.00 

26 5.00 5.70 4.00 4.00 

27 5.00 5.91 4.00 4.00 

 

After manipulating Sierpinski graph which is not Eulerian into Sierpinski Eulerian graph by 

introducing an edge between two vertices that having odd number of degrees.   

From above given data, it is found that the spectrum (i.e. eigenvalue) of graph is used to 

characteristically encode the properties graphs. This graph model of a system provides a 

powerful means for this purpose.  Likely, how can graph behave when it is at different stage 

of iterations (i.e. study of topological behaviour, structure, networking etc.). Keeping all in 

mind we can say that on comparison to spectrum of Sierpinski graph and Sierpinski Eulerian 

graph using matrix representations it can be stated that the Signless Laplacian spectrum has 

more representational power than the Laplacian spectrum, in terms of resulting of above 

graphs.  

Conclusion: 

This is a strong basis for believing that almost all graphs are determined by their spectra 

when “n” tends towards the infinity. We hope to have increased awareness about the 

importance of the choice of representation matrix for graph signal processing applications 

and other fields of computer science, science, mathematics and other aspects of NP problems.   
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